Проведем высоты BH1 и CH2 (BC - меньшее основание): H1H2 = BC, т.к. высоты образуют прямоугольник (углы прямые), т.е. H1H2 = 7, а AH1 = H2D по свойству равнобедренной трапеции. Т.к. угол при основании равен 60°, в треугольнике ABH1 угол ABH1 = 30°, значит, катет, лежащий против этого угла, равен половине гипотенузы. AH1 = H2D = 5. AD = 10 + 7 = 17. BH1 = корень(100 - 25) = 5 корней из 3. Площадь трапеции = полусумме оснований * высоту = 12 * 5 корней из 3 = 60 корней из 3. ответ: 60 корней из 3.
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².
Т.к. угол при основании равен 60°, в треугольнике ABH1 угол ABH1 = 30°, значит, катет, лежащий против этого угла, равен половине гипотенузы. AH1 = H2D = 5. AD = 10 + 7 = 17.
BH1 = корень(100 - 25) = 5 корней из 3.
Площадь трапеции = полусумме оснований * высоту = 12 * 5 корней из 3 = 60 корней из 3.
ответ: 60 корней из 3.