1) Если прямые пересекаются, то координаты в точке пересечения совпадают.
у = х + 4 и у = -2х - 5.
Приравняем значения у:
х + 4 = -2х - 5;
х + 2х = -4 - 5;
3х = -9;
х = -9/3 = -3.
Вычислим значение х: у = х + 4; у = -3 + 4 = 1.
Координаты точки О(-3; 1).
2) Уравнение окружности имеет вид (х - х0)^2 + (y - y0)^2 = R^2, где х0 и у0 - это координаты центра окружности, а R - длина радиуса.
Координаты центра О(-3; 1).
Окружность проходит через точку А(1; -2), значит, ОА - это радиус. Вычислим расстояние между точками А и О по формуле ОА^2 = (x1 - x2)^2 + (y1 - y2)^2.
Рассмотрим плоскость ABD (по А1 существует плоскость ABD). ME- средняя линия треугольника ABD по определению. По А1, BK - середина треугольника BDC (по определению). PK||BD, PK=DB÷2 => PK||DE (по теореме о параллельных прямых). PK=ME=DB%2. По А1: существует такая плоскость MPKE-параллелограм (по первому признаку параллелограмма). MK, De-диагональ, MK=PE (по условию). По А1: MP-средняя линия треугольника ABC. Треугольник EMP-прямоугольный => по теореме Пифагора найдём ME^2=EP^2-MP^2=10^2 - 6^2 =8^2 => ME=8, тогда BD=2*8=16. ОТВЕТ: BD=16
1) Если прямые пересекаются, то координаты в точке пересечения совпадают.
у = х + 4 и у = -2х - 5.
Приравняем значения у:
х + 4 = -2х - 5;
х + 2х = -4 - 5;
3х = -9;
х = -9/3 = -3.
Вычислим значение х: у = х + 4; у = -3 + 4 = 1.
Координаты точки О(-3; 1).
2) Уравнение окружности имеет вид (х - х0)^2 + (y - y0)^2 = R^2, где х0 и у0 - это координаты центра окружности, а R - длина радиуса.
Координаты центра О(-3; 1).
Окружность проходит через точку А(1; -2), значит, ОА - это радиус. Вычислим расстояние между точками А и О по формуле ОА^2 = (x1 - x2)^2 + (y1 - y2)^2.
ОА^2 = (-3 - 1)^2 + (1 - (-2))^2 = (-4)^2 + 3^2 = 16 + 9 = 25.
ОА = √25 = 5.
Уравнение окружности имеет вид (х + 3)^2 + (y - 1)^2 = 25.
Рассмотрим плоскость ABD (по А1 существует плоскость ABD). ME- средняя линия треугольника ABD по определению. По А1, BK - середина треугольника BDC (по определению). PK||BD, PK=DB÷2 => PK||DE (по теореме о параллельных прямых). PK=ME=DB%2. По А1: существует такая плоскость MPKE-параллелограм (по первому признаку параллелограмма). MK, De-диагональ, MK=PE (по условию). По А1: MP-средняя линия треугольника ABC. Треугольник EMP-прямоугольный => по теореме Пифагора найдём ME^2=EP^2-MP^2=10^2 - 6^2 =8^2 => ME=8, тогда BD=2*8=16. ОТВЕТ: BD=16