Визначити ознаку виробy cos 30º* sin 15°* cos 125°* tg 35°; b) sin 137°* cos 150°*tg 22°* cos 35º; c) tg 143° * sin 165°* tg 87°* cos 126°; d) cos 32° * sin 132° * cos 135º* tg 92°.
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
1) Известно, что у вписанного в окружность четырехугольника сумма противоположных углов равна 180 градусов. Последовательно вычитаем из 180 21 и ли 49 и находим больший угол. 2) В правильном многоугольнике углы и стороны равны. В правильном многоугольнике, вписанном в окружность углы лежат на окружности, следовательно отрезки соединяющие углы с центром окружности будут радиусы. Все проведенные радиусы к углам правильного многоугольника, деля его на равнобедренные треугольники, одновременно деля углы пополам. Следовательно углы при основании этих треугольников будут равны 70 гр. Следовательно углы при вершине этих треугольников будут равны 180-70-70=40 гр. Их общая сумма равна 360 гр. Отсюда 360:40=9 сторон.
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².
Последовательно вычитаем из 180 21 и ли 49 и находим больший угол.
2) В правильном многоугольнике углы и стороны равны. В правильном многоугольнике, вписанном в окружность углы лежат на окружности, следовательно отрезки соединяющие углы с центром окружности будут радиусы. Все проведенные радиусы к углам правильного многоугольника, деля его на равнобедренные треугольники, одновременно деля углы пополам. Следовательно углы при основании этих треугольников будут равны 70 гр. Следовательно углы при вершине этих треугольников будут равны 180-70-70=40 гр. Их общая сумма равна 360 гр. Отсюда 360:40=9 сторон.