В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
troffpolina2003
troffpolina2003
12.02.2022 11:29 •  Геометрия

Вкоординатной системе дана точка a(8; 1; 17). определи координаты точек, в которые переходит точка a в… 1. …центральной симметрии относительно начала координат: ; ; ; 2. …осевой симметрии относительно оси ox: ; ; ; оси oy: ; ; ; оси oz: ; ; ; 3 …в зеркальной симметрии относительно координатной плоскости (xoy): ; ; ; координатной плоскости (yoz): ; ; ; координатной плоскости (xoz): ; ; .

Показать ответ
Ответ:
rous59
rous59
22.10.2020 22:51

Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть 
c2 = a2 + b2,
где c — гипотенуза треугольника.

Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,

где c — гипотенуза треугольника.

Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:
h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.

Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула
a2 = b2 + c2 – 2bc cos α.

Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри тре­угольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).

Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношения

Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).

Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.

Теорема 8 (формулы для вычисления площади треугольника).

4

Последняя формула называется формулой Герона.

Теорема 9 (теорема о биссектрисе внутреннего угла).


Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть
b : c = x : y.

Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)


.

Теорема 11 (формула для вычисления длины биссектрисы).


Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).

Теорема 13 (формула для вычисления длины медианы). 

0,0(0 оценок)
Ответ:
scritinomerok
scritinomerok
16.02.2022 19:36
. В треугольнике ABC угол C равен 90 градусов, BC=18, tgA= (4√65)/65.Найдите высоту CH.Тангенс находят делением катета, противолежащего углу, к катету прилежащемуСложность здесь в основном в вычислениях - числа довольно неудобные. tgA=BC:ACtgA=(4√65):65умножим обе части отношения на √65 и получим(4*√65):65=4:√65BC:AC=4:√654AC=BC*√65АС=(18√65):4= (9√65):2Треугольники АВС и АНС подобны по свойству высоты прямоугольного треугольника. Найдем гипотенузу АВ:АВ=√(ВС²+АС²)=√(324+81*65:4)=√(6561/4)АВ=81/2ВС:СН=АВ:АС18:СН=(81/2):{(9√65):2}18 CH=9:√65CH=18:(9:√65)=2√65
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота