Объяснение (подробно): Нарисуем треугольник АВС. Пусть АВ=3√7, ВС=12, О- точка пересечения биссектрис из А и С.
Рассмотрим треугольник АОС. Угол ЕОС - внешний. По свойству внешнего угла сумма двух внутренних углов, не смежных с ним, равна 30°. Эти углы - половины углов при стороне АС треугольника АВС .Поэтому угол ВАС+ВСА=60°. Из суммы углов треугольника угол АВС=180°-60°=120°.
Одна из формул площади треугольника S=0,5•a•b•sinα, где а и b - стороны, α – угол между ними. S (ABC)=0,5•3√7•12•√3/2=9√21 (см²)
=========
Задача решена по данному в вопросе условию. Возможно, условие дано с ошибкой и одна из сторон не 3√7, а 7√3. Тогда площадь будет иной. Вычислите ее самостоятельно.
Координаты точки B1 (3; 4; 4) (т.к. она симметрична точке B относительно плоскости xOz, то у них совпадают координаты x и z, а y противоположна по знаку).
ответ: 9√21 (см²)
Объяснение (подробно): Нарисуем треугольник АВС. Пусть АВ=3√7, ВС=12, О- точка пересечения биссектрис из А и С.
Рассмотрим треугольник АОС. Угол ЕОС - внешний. По свойству внешнего угла сумма двух внутренних углов, не смежных с ним, равна 30°. Эти углы - половины углов при стороне АС треугольника АВС .Поэтому угол ВАС+ВСА=60°. Из суммы углов треугольника угол АВС=180°-60°=120°.
Одна из формул площади треугольника S=0,5•a•b•sinα, где а и b - стороны, α – угол между ними. S (ABC)=0,5•3√7•12•√3/2=9√21 (см²)
=========
Задача решена по данному в вопросе условию. Возможно, условие дано с ошибкой и одна из сторон не 3√7, а 7√3. Тогда площадь будет иной. Вычислите ее самостоятельно.
20
Объяснение:
Координаты точки B1 (3; 4; 4) (т.к. она симметрична точке B относительно плоскости xOz, то у них совпадают координаты x и z, а y противоположна по знаку).
О(0;0;0)
B1 (3; 4; 4)
В(3;-4;4)
OB=√((xb - xo)^2 + (yb - y0)^2 + (zb - zo)^2) = √((3 - 0))^2 + (-4 - 0)^2 + (4 - 0)^2)=√(9+16+16) = √41
OB=OB1=√41 -симметричны
BB1 = √((xb1 - xb)^2 + (yb1 - yb)^2 + (zb1 - zb)^2)=
=√((3 - 3))^2 + (4 - (-4))^2 + (4 - 4)^2)=√64 = 8
По т.Герона S=√(p(p-a)*(p-b)*(p-c))
p=P/2=(8+2√41)/2 = 4+√41
S=√(( 4+√41)( 4+√41-√41)^2*( 4+√41-8)) = √(16*(41-16)) = 4*5