В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
alese4kas94p0cen0
alese4kas94p0cen0
17.01.2022 23:20 •  Геометрия

Вописанной около круга неравнобочной трапеции диаметр, перпендикулярный основаниям, делит площадь трапеции в отношении 1: 2. найдите отношение синусов острых углов трапеции.

Показать ответ
Ответ:
ARDASHEV2019
ARDASHEV2019
06.06.2020 22:23

Удивительно легкая задача. Центр окружности лежит на пересечении биссектрис всех внутренних углов. Диаметр, соединяющий точки касания оснований, биссектрисы от вершин до центра окружности, и радиусы, проведенные в точки касания окружностью боковых сторон делят трапецию на 8 треугольников, которые попарно равны по площади. Поэтому треугольники, составленные из биссектрис углов при верхнем и нижнем основаниях (от вершин до центра окружности) и боковыми сторонами (целиком), составляют каждый по площади половину от заданных частей трапеции (ну, тех самых, про которые сказано, что отношение их площадей равно 1/2). Значит и у них отношение площадей 1/2.  Но роль высот в этих треугольниках играют радиусы, поэтому отношение боковых сторон трапеции - тоже 1/2, поскольку это основания в этих треугольниках:). Ну, а отношение ВЫСОТЫ трапеции к боковой стороне и есть синус угла при основании. Поэтому искомое отношение 1/2.

Порядок-то не спрашивали:)) 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота