1) Углы при основании равны, тогда угол А=углу Д=45 градусов,
2) Проведем высоты ВН и СМ
3) Рассмотрим четырехугольник ВНМС
Он будет параллелограммом, т.к. ВН || СН как высоты, ВС || НМ как основания
Тогда ВН=СН, ВС=НМ по св-ву параллелограмма
4) Меньшее основание - ВС, тогда АН+МД=11-5=6 см.
5) Прямоугольные треугольники АВН и МВС будут равны, т.к. у обоих углы равны 45 градусов, и гипотенуза равны (т.к. трапеция равнобедренная).
6) АН=МД=6:2=3 см. (как соответственные элементы)
7) Треугольник АВН - равнобедренный, тогда ВН=АН=3 см
8) Площадь трапеции равна половине произведения оснований, помноженное на высоту, т.е. 11+5/2 * 3 = 24 см.2
Задача 3
Трапеция АВСД. угол А и С = 90 градусов, треугольник ВСД - равнобедренный, тогда углы при основании равны по 30 градусов, тогда СД = 2√3, тогда проведем высоту СМ, чет-к АВСМ будет параллелограммом (док-во в 1-ой задачи), тогда ВС = АМ = 2√3, Треугольник АВД - прямоугольный, угол ВДА равен 30 градусов, угол Д равен 60 градусов, тогда ДМ = √3, по теореме пифагора СМ равно 3 см.
Площадь равна половине произведения оснований на высоту, т.е. 2√3+3√3/2 * 3 = 2,5√3 * 3 = 7,5√3 см2
Задача 4
1) Периметр трапеции равен АВ+ВС+СД+АД, тогда АВ+ВД=64-24-30=10
АВ=ВД=5 см., т.к. трапеция равнобедренная.
2) Проведем высоты ВН и СМ, тогда четырехугольник ВНМС будет параллелограммом, т.к. ВН || СМ (высоты), ВС || НМ (как основания)
ВС=НМ, ВН=СМ по св-ву параллелограмма.
3) НМ=24, тогда АН+МД=30-24=6, а АН=МД, т.к. прямоугольные треугольники равны (док-во из первой задачи)
АН=МД=3 см.
По теореме пифагора найдем ВН=4
4) Площадь трапеции равна половине произведения оснований, помноженное на высоту, т.е. 24+30/2 * 4=108 см.2
Задача 1
1) Углы при основании равны, тогда угол А=углу Д=45 градусов,
2) Проведем высоты ВН и СМ
3) Рассмотрим четырехугольник ВНМС
Он будет параллелограммом, т.к. ВН || СН как высоты, ВС || НМ как основания
Тогда ВН=СН, ВС=НМ по св-ву параллелограмма
4) Меньшее основание - ВС, тогда АН+МД=11-5=6 см.
5) Прямоугольные треугольники АВН и МВС будут равны, т.к. у обоих углы равны 45 градусов, и гипотенуза равны (т.к. трапеция равнобедренная).
6) АН=МД=6:2=3 см. (как соответственные элементы)
7) Треугольник АВН - равнобедренный, тогда ВН=АН=3 см
8) Площадь трапеции равна половине произведения оснований, помноженное на высоту, т.е. 11+5/2 * 3 = 24 см.2
Задача 3
Трапеция АВСД. угол А и С = 90 градусов, треугольник ВСД - равнобедренный, тогда углы при основании равны по 30 градусов, тогда СД = 2√3, тогда проведем высоту СМ, чет-к АВСМ будет параллелограммом (док-во в 1-ой задачи), тогда ВС = АМ = 2√3, Треугольник АВД - прямоугольный, угол ВДА равен 30 градусов, угол Д равен 60 градусов, тогда ДМ = √3, по теореме пифагора СМ равно 3 см.
Площадь равна половине произведения оснований на высоту, т.е. 2√3+3√3/2 * 3 = 2,5√3 * 3 = 7,5√3 см2
Задача 4
1) Периметр трапеции равен АВ+ВС+СД+АД, тогда АВ+ВД=64-24-30=10
АВ=ВД=5 см., т.к. трапеция равнобедренная.
2) Проведем высоты ВН и СМ, тогда четырехугольник ВНМС будет параллелограммом, т.к. ВН || СМ (высоты), ВС || НМ (как основания)
ВС=НМ, ВН=СМ по св-ву параллелограмма.
3) НМ=24, тогда АН+МД=30-24=6, а АН=МД, т.к. прямоугольные треугольники равны (док-во из первой задачи)
АН=МД=3 см.
По теореме пифагора найдем ВН=4
4) Площадь трапеции равна половине произведения оснований, помноженное на высоту, т.е. 24+30/2 * 4=108 см.2
Значит, дуги ОT и ОL равны, значит и дуги ВТ и BL тоже равны. Т.е. площади закрашенных сегментов равны.
∠ВТО = 90° как вписанный, опирающийся на диаметр. Значит, ОТ - высота прямоугольного треугольника АВО.
ОТ² = ВТ · ТА = 9√3 · 3√3 = 81
ОТ = 9 см
ΔВТО: ∠Т = 90°. tg∠B = TO/BT = 9/(9√3) = 1/√3 ⇒ ∠TBO = 30°
⇒ BO = 2TO = 18 см, а радиус окружности BK = KO = KT = 9 см
ΔВКТ равнобедренный, ⇒∠КТВ = ∠КВТ = 30° ⇒ ∠BKT = 120°
Sсегм = Sсект - SΔbkt = π · KB² · 120° / 360° - 1/2·BK·KT·sin120° =
= π · 81 / 3 - 1/2· 81· √3/2 = 27π - 81√3/4
Площадь круга вне ромба в 2 раза больше:
Sкр = 54π - 81√3/2