Восновании треугольной пирамиды лежит равнобедренный треугольник abc, угол c-прямой. длины боковых ребер пирамиды равны k, длина гипотенузы основания равна c. найдите углы, которые боковые ребра образуют с основанием и двугранный угол при ребре ce.
Условие неконкретно, и от этого нет ответа. Задача такая: Две хорды OA OB по 5 см образуют вписанный угол в 36 градусов Найти длину окружности решение: Треугольник OAB равнобедренный. Угол при вершине 36° Угол при основании (180-36)/2 = 72° По теореме синусов радиус описанной окружности треугольника OAB 2R = OA/sin(∠ABO) 2R = 5/sin(72°) R = 5/(2 *sin(72°)) ≈ 2,629 см Можно выразить в радикалах, но они здоровенные. Теперь с дугами ∠AOB = 36° - вписанный угол ∠AZB = 2*∠AOB = 2*36 = 72° - соответствующий центральный дуга АВ = 72° её длина l(AB) = R*∠AZB/180*π = 5/(2 *sin(72°))*72/180*π ≈ 3,3033 см Дуга АО = дуга ВО = (360-72)/2 = 144° их длина l(AО) = R*∠AZО/180*π = 5/(2 *sin(72°))*144/180*π ≈ 6,6065 см и полная длина окружности l(O) = R*2*π = 5/(2 *sin(72°))*2*π ≈ 16,5163 см
Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:
Задача такая:
Две хорды OA OB по 5 см образуют вписанный угол в 36 градусов
Найти длину окружности
решение:
Треугольник OAB равнобедренный. Угол при вершине 36°
Угол при основании (180-36)/2 = 72°
По теореме синусов радиус описанной окружности треугольника OAB
2R = OA/sin(∠ABO)
2R = 5/sin(72°)
R = 5/(2 *sin(72°)) ≈ 2,629 см
Можно выразить в радикалах, но они здоровенные.
Теперь с дугами
∠AOB = 36° - вписанный угол
∠AZB = 2*∠AOB = 2*36 = 72° - соответствующий центральный
дуга АВ = 72°
её длина
l(AB) = R*∠AZB/180*π = 5/(2 *sin(72°))*72/180*π ≈ 3,3033 см
Дуга АО = дуга ВО = (360-72)/2 = 144°
их длина
l(AО) = R*∠AZО/180*π = 5/(2 *sin(72°))*144/180*π ≈ 6,6065 см
и полная длина окружности
l(O) = R*2*π = 5/(2 *sin(72°))*2*π ≈ 16,5163 см
Даны вершины треугольника A(−2,1), B(3,3), С(1,0). Найти:
а) длина стороны AB = √((3-(-2))² + (3-1)² = √(25 + 4) = √29.
б) уравнение медианы BM.
Находим координаты точки М как середины стороны АС.
М(((-2+1)/2; (1+3)/2) = (-0,5; 2).
Вектор ВМ = ((-0,5-3); (2-3)) = (-3,5; -1).
Уравнение ВМ: (х – 3)/(-3,5) = (у – 3)/(-1). Это в каноническом виде.
Оно же в общем виде 7у – 2х – 15 = 0.
И в виде уравнения с угловым коэффициентом у = (2/7)х + (15/7).
в) cos угла BCA.
Вектор СВ = ((1-3); (0-3)) = (-2; -3). Модуль равен √(4 + 9) = √13.
Вектор СА = ((1-(-2)); (0-1)) = (3; -1). Модуль равен √(9 + 1) = √10.
cos(BCA) = (-2*3 + (-3)*(-1))/( √13*√10) = -3/√130 ≈ -0,26312.
г) уравнение высоты CD.
Находим уравнение стороны АВ.
Вектор AB = ((3-(-2)); (3-1)) = (5; 2).
Уравнение АВ: (х + 2)/5 = (у -1)/2 или у = (2/5)х + (9/5).
Угловой коэффициент перпендикуляра к АВ (это высота СD) равен -1/(2/5) = -5/2. Подставим координаты точки С.
0 = (-5/2)*1 + b. Отсюда b = 5/2.
Уравнение CD: y = (-5/2)x + (5/2).
д) длина высоты СD.
Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:
d = (A·Mx + B·My + C)/√A2 + B2
Подставим в формулу данные: координаты точки С(1; 0) и уравнение прямой АВ:
2х – 5у + 9 = 0.
d = (2·1 + (-5)·0 + 9)/√22 + (-5)2 = (2 + 0 + 9)/√4 + 25 =
= 11/√29 = 11√29/29 ≈ 2.0426487.
е) площадь треугольника АВС по векторам.
Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:
S= ± (1 /2) *(x1−x3 y1−y3 )
(x2−x3 y2−y3 )
x1−x3 y1−y3
x2−x3 y2−y3
A(−2,1), B(3,3), С(1,0).
S = (1/2)}|((-2-1)*(3-0) – (1-0)*3-1))| = (1/2)*|(-9-2)| = 11/2 = 5,5 кв.ед.