Востроугольном треугольнике abc на сторонах ac и ab отмечены точки к и l так, что прямая кl параллельна вс и kl = кс. на стороне вс выбрана точка м так, что угол кмв = углу вас. докажите, что км = аl.
Найдем точку пересечения диагоналей прямоугольника. Координаты середины вектора АС (диагональ) равны: О(3,5;0,5). Координаты вектора равны разности соответствующих координат точек его конца и начала. Тогда вектор АО{3,5;0,5}, а вектор ВО{2,5;-2,5}. Это половины диагоналей и угол между ними находим по формуле: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: cosα=(3,5*2,5+0,5*2,5)/[√(3,5²+0,5²)*√(2,5²+(-2,5)²)]. cosα=(8,75+1,25)/[√(12,25+0,25)*√(6,25+6,25)]. Или cosα=10/12,5=0,8. Значит угол α≈36°
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение находим по формуле: (a,b)=x1*x2+y1*y2. Вектор АВ{1;3} Вектор ВС{6;-2} (ABxBC)=6+(-6)=0. Значит стороны АВ и ВС перпендикулярны. Следовательно, АВСD - прямоугольник.
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²
Координаты вектора равны разности соответствующих координат точек его конца и начала.
Тогда вектор АО{3,5;0,5}, а вектор ВО{2,5;-2,5}.
Это половины диагоналей и угол между ними находим по формуле:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае:
cosα=(3,5*2,5+0,5*2,5)/[√(3,5²+0,5²)*√(2,5²+(-2,5)²)].
cosα=(8,75+1,25)/[√(12,25+0,25)*√(6,25+6,25)]. Или
cosα=10/12,5=0,8. Значит угол α≈36°
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Скалярное произведение находим по формуле: (a,b)=x1*x2+y1*y2.
Вектор АВ{1;3}
Вектор ВС{6;-2}
(ABxBC)=6+(-6)=0.
Значит стороны АВ и ВС перпендикулярны.
Следовательно, АВСD - прямоугольник.