Вписане в рівнобедрений трикутник коло ділить бічну сторону у відношенні 2 : 3, починаючи від основи. Знайдіть сторони трикутника, якщо його периметр дорівнює 70 см.
Площадь боковой поверхности цилиндра: S=2πRH=8√3π ⇒ Н=4√3/R. Сечение цилиндра проходит через хорду АВ в основании, отстоящую от центра окружности на 2 см. ОМ=2 см. АМ=ВМ, М∈АВ, АО=ВО=R. В прямоугольном тр-ке АОМ АМ=√(АО²-ОМ²)=√(R²-4). АВ=2АМ=2√(R²-4). По условию АВ=Н. Объединим оба полученные уравнения высоты. 4√3/R=2√(R²-4), возведём всё в квадрат, 48/R²=4(R²-4), 12=R²(R²-4), R⁴-4R²-12=0, R₁²=-2, отрицательное значение не подходит. R₂²=6. Н=2√(6-4)=2√2 см. Площадь искомого сечения равна: S=H²=8 см² - это ответ.
В равнобедренном треугольнике АВС <C=<A. <DAC=(1/2)*<A, так как AD - биссектриса. Значит <DAC=(1/2)*<C. В треугольнике ADC <ADB - внешний и равен сумме двух внутренних углов, не смежных с ним, то есть <ADB=<DAC+<C или 1,5*<C=110°. Тогда <C=110°:1,5=73и1/3°=<A, a <B=180°-146и2/3°=33и1/3° (так как сумма внутренних углов треугольника равна 180°). ответ: <A=<C=73и1/3°, <C=33и1/3°.
P.S. Стоило в условии задачи дать <ADB=111° и мы получили бы ответ: <A=<C=74°,a <B=32° !
Сечение цилиндра проходит через хорду АВ в основании, отстоящую от центра окружности на 2 см. ОМ=2 см. АМ=ВМ, М∈АВ, АО=ВО=R.
В прямоугольном тр-ке АОМ АМ=√(АО²-ОМ²)=√(R²-4).
АВ=2АМ=2√(R²-4).
По условию АВ=Н. Объединим оба полученные уравнения высоты.
4√3/R=2√(R²-4), возведём всё в квадрат,
48/R²=4(R²-4),
12=R²(R²-4),
R⁴-4R²-12=0,
R₁²=-2, отрицательное значение не подходит.
R₂²=6.
Н=2√(6-4)=2√2 см.
Площадь искомого сечения равна: S=H²=8 см² - это ответ.
так как AD - биссектриса. Значит <DAC=(1/2)*<C. В треугольнике ADC <ADB - внешний и равен сумме двух внутренних углов, не смежных с ним, то есть <ADB=<DAC+<C или 1,5*<C=110°.
Тогда <C=110°:1,5=73и1/3°=<A, a <B=180°-146и2/3°=33и1/3° (так как сумма внутренних углов треугольника равна 180°).
ответ: <A=<C=73и1/3°, <C=33и1/3°.
P.S. Стоило в условии задачи дать <ADB=111° и мы получили бы ответ:
<A=<C=74°,a <B=32° !