Вправильной четырехугольной усечённой пирамиде длины сторон оснований равны 5 см и 15 см. вычислите площадь полной поверхности пирамиды , если площадь диагонального сечения пирамиды равна 120√2 см2(см в квадрате )
2). Xb=2*Xd - Xa => Xb=8-3=5. Yb=2*Yd - Ya => Yb= -4-0= -4. Точка B(5;-4).
Параллелограмм - четырехугольник, у которого две противоположные стороны равны и параллельны. В данном нам четырехугольнике сторона АВ=√((Xb-Xa)²+(Yb-Ya)²)=√((-7-2)²+(0-(-5))²)=√(81+25)=√106.
Итак, противоположные стороны АВ и CD равны. Условие параллельности векторов: координаты векторов должны быть пропрпциональны, то есть их отношение должно быть равно. В нашем случае вектора АВ и CD имеют координаты: АВ{-9;5}, a CD{9;-5}. Xab/Xcd=Yab/Ycd= -1, то есть АВ параллельна CD.
Таким образом, четырехугольник АBCD - параллелограмм, что и требовалось доказать.
Вот с учебника переписала Через любую точку пространства, не лежащую на данной прямой проходит прямая, параллельная данной и притом только одна.
Признак параллельности прямой и плоскости
Если прямая, не лежащая в плоскости, параллельна какой-нибудь прямой, лежащей в плоскости, то она параллельна и самой плоскости
•Доказательство Метод «от обратного» Пусть а не параллельна α. Тогда…а содержится в α. или а пересекает α.По лемме, так как а ║ b, то b тоже пересекает α. Это противоречит условию теоремы. Значит, наше предположение неверно. Следовательно а ║ α
•Если одна из двух параллельных прямых параллельна плоскости, то другая прямая…•либо также параллельна данной плоскости,•либо лежит в
Координаты середины отрезка равны полусумме соответствующих координат начала и конца отрезка. Следовательно,
1). Xd=(Xa+Xb)/2 => Xa=2*Xd - Xb => Xa= -2-8= -10.
Yd=(Ya+Yb)/2 => Ya=2*Yd - Yb => Ya= 14-5= 9. Точка А(-10;9)
2). Xb=2*Xd - Xa => Xb=8-3=5. Yb=2*Yd - Ya => Yb= -4-0= -4. Точка B(5;-4).
Параллелограмм - четырехугольник, у которого две противоположные стороны равны и параллельны. В данном нам четырехугольнике сторона АВ=√((Xb-Xa)²+(Yb-Ya)²)=√((-7-2)²+(0-(-5))²)=√(81+25)=√106.
CD=√((Xd-Xc)²+(Yd-Yc)²)=√((3-(-6))²+(-4-1)²)=√(81+25)=√106.
Итак, противоположные стороны АВ и CD равны. Условие параллельности векторов: координаты векторов должны быть пропрпциональны, то есть их отношение должно быть равно. В нашем случае вектора АВ и CD имеют координаты: АВ{-9;5}, a CD{9;-5}. Xab/Xcd=Yab/Ycd= -1, то есть АВ параллельна CD.
Таким образом, четырехугольник АBCD - параллелограмм, что и требовалось доказать.
Вот с учебника переписала Через любую точку пространства, не лежащую на данной прямой проходит прямая, параллельная данной и притом только одна.
Признак параллельности прямой и плоскости
Если прямая, не лежащая в плоскости, параллельна какой-нибудь прямой, лежащей в плоскости, то она параллельна и самой плоскости
•Доказательство Метод «от обратного» Пусть а не параллельна α. Тогда…а содержится в α. или а пересекает α.По лемме, так как а ║ b, то b тоже пересекает α. Это противоречит условию теоремы. Значит, наше предположение неверно. Следовательно а ║ α
•Если одна из двух параллельных прямых параллельна плоскости, то другая прямая…•либо также параллельна данной плоскости,•либо лежит в
Подробнее - на -