Впрямоугольном треугольнике abc гипотенуза ab равна 25 см, катет ac равен 7 см, точка m — середина ab. укажите верные равенства. 1.|ca|-|cb| =12,5 2.|ca|+|mb| =12,5 3.|ba|-|bc|=12,5 4.|ca| -|cm|=12,5 5.|ca|-|am|=12,5 6.|bc|-|ac|=12,5
Внутри прямого угла квадрата, 90 градусов, симметрично расположен угол треугольника 60 градусов. Нижняя сторона квадрата, отрезок правой стороны квадрата и сторона треугольника образуют прямоугольный треугольник. Нас интересует его гипотенуза. Обозначим сторону квадрата a 10/a = cos(15°) Для того, чтобы получить решение в радикалах, а не в непонятных arccos(15) воспользуемся формулами половинного угла cos²(α/2) = (1+cos(α))/2 cos(15°) = √(1/2+cos(30°)/2) = √(1/2+√3/4) = 1/4(√2+√6) a = 10/cos(15°) = 10/(1/4(√2+√6)) = 10(√6-√2) см И площадь треугольника S = 1/2*a²*sin(60°) = 1/2*(10(√6-√2))²*√3/2 = 200√3-300 см²
6х+5у-30=0 5y = -6x + 30 у = -6/5x + 6 перпендикуляр, проведённый к этой прямой из начала координат будет иметь обратный угловой коэффициент k₂ = -1/k₁ = -1/(-6/5) = 5/6 И эта прямая проходит через точку (0;0), т.е. в уравнении прямой y=ax+b b должно быть равно 0 Уравнение перпендикуляра y = 5/6x Точку пересечения найдём из совместного решения систему двух уравнений у = -6/5x + 6 y = 5/6x 5/6x = -6/5x + 6 (5/6+6/5)x = 6 (25+36)x = 6*30 x = 180/61, y = 5/6x = 150/61 И расстояние от начала координат √((180/61)²+(150/61)²) = 30/√61
Нас интересует его гипотенуза. Обозначим сторону квадрата a
10/a = cos(15°)
Для того, чтобы получить решение в радикалах, а не в непонятных arccos(15) воспользуемся формулами половинного угла
cos²(α/2) = (1+cos(α))/2
cos(15°) = √(1/2+cos(30°)/2) = √(1/2+√3/4) = 1/4(√2+√6)
a = 10/cos(15°) = 10/(1/4(√2+√6)) = 10(√6-√2) см
И площадь треугольника
S = 1/2*a²*sin(60°) = 1/2*(10(√6-√2))²*√3/2 = 200√3-300 см²
5y = -6x + 30
у = -6/5x + 6
перпендикуляр, проведённый к этой прямой из начала координат будет иметь обратный угловой коэффициент
k₂ = -1/k₁ = -1/(-6/5) = 5/6
И эта прямая проходит через точку (0;0), т.е. в уравнении прямой y=ax+b b должно быть равно 0
Уравнение перпендикуляра
y = 5/6x
Точку пересечения найдём из совместного решения систему двух уравнений
у = -6/5x + 6
y = 5/6x
5/6x = -6/5x + 6
(5/6+6/5)x = 6
(25+36)x = 6*30
x = 180/61,
y = 5/6x = 150/61
И расстояние от начала координат
√((180/61)²+(150/61)²) = 30/√61