Впрямоугольном треугольнике вписана окружность, точка касания лежащие на гипотенузе делит её на отрезки равные 4 и 6 см, найдите площадь данного треугольника.
Свойство касательной к окружности: если из одной точки к окружности проведены две касательные, то отрезки касательных равны. Поэтому отрезок равный 6 можно отметить и на катете. На другом катете есть отрезок, равный 4. А так же на каждом катете есть отрезки, равные r- радусу, вписанной окружности. Теперь теорема Пифагора (6+r)² + (4+r)²=(6+4)² Найдем r 36+12r+r²+16+8r+r²=100 2r²+20r-48=0 r²+10r-24=0 корни -12 и 2. Подходит только 2 ответ катет 6+2=8 и второй катет 4+2=6 Площадь равна половине произведения катетов 24 см кв
Поэтому отрезок равный 6 можно отметить и на катете. На другом катете есть отрезок, равный 4. А так же на каждом катете есть отрезки, равные r- радусу, вписанной окружности.
Теперь теорема Пифагора
(6+r)² + (4+r)²=(6+4)²
Найдем r
36+12r+r²+16+8r+r²=100
2r²+20r-48=0
r²+10r-24=0
корни -12 и 2. Подходит только 2
ответ катет 6+2=8 и второй катет 4+2=6 Площадь равна половине произведения катетов 24 см кв