Т.к. биссектриса является высотой, треугольник ABC - равнобедренный, с основанием AC. Значит, AB=BC, а BK также является медианой, т.е. AK=CK.Периметр ABK P=AB+BK+AK;Периметр ABC=AB+AC+BC=AB+AK+KB+BC=2AB+2AK=2(AB+AK)=2(Pabk-BK)=2(16-5)=2*11=22 см Задача 2Т.к. AB=BC, AF=EC=AB/2=BC/2;Рассмотрим треугольники AFC и CEAОни равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA)Тогда углы EAC=FCA.Значит, угол BAE=BAC-EAC=BCFУглы FMA=EMC, как вертикальыеТогда углы AFM=180-FMA-FAM=MECЗначит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM)Тогда AM=MC => треугольник AMC - равнобедренный
Задача 2Т.к. AB=BC, AF=EC=AB/2=BC/2;Рассмотрим треугольники AFC и CEAОни равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA)Тогда углы EAC=FCA.Значит, угол BAE=BAC-EAC=BCFУглы FMA=EMC, как вертикальыеТогда углы AFM=180-FMA-FAM=MECЗначит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM)Тогда AM=MC => треугольник AMC - равнобедренный