24
Объяснение:
1) Средняя линия равна полусумме оснований, следовательно:
(ВС + АD) : 2 = 21
2) Так как ВС ║ АD как основания трапеции, то ΔВLC подобен треугольнику АLD.
3) Рассчитаем коэффициент подобия, пологая, что LC = 3x, а CD = x.
LD = LC + CD = 3х + х = 4 х
Тогда коэффициент подобия равен:
LD : LC = 4х : 3 х = 4/3
4) Таким образом, если AD = 4/3 ВС, в силу чего выражение
можно записать как:
(ВС + 4/3 ВС) : 2 = 21
Находим ВС:
(ВС + 4/3 ВС) = 42
2 1/3 ВС = 42
ВС = 18
AD = ВC · 4/3 = 18 · 4/3 = 24
ответ: AD = 24
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
24
Объяснение:
1) Средняя линия равна полусумме оснований, следовательно:
(ВС + АD) : 2 = 21
2) Так как ВС ║ АD как основания трапеции, то ΔВLC подобен треугольнику АLD.
3) Рассчитаем коэффициент подобия, пологая, что LC = 3x, а CD = x.
LD = LC + CD = 3х + х = 4 х
Тогда коэффициент подобия равен:
LD : LC = 4х : 3 х = 4/3
4) Таким образом, если AD = 4/3 ВС, в силу чего выражение
(ВС + АD) : 2 = 21
можно записать как:
(ВС + 4/3 ВС) : 2 = 21
Находим ВС:
(ВС + 4/3 ВС) = 42
2 1/3 ВС = 42
ВС = 18
AD = ВC · 4/3 = 18 · 4/3 = 24
ответ: AD = 24
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.