Вравнобедренной трапеции abcd с основаниями ad=10, bc=6 из середины m стороны ab опущен перпендикуляр mn на сторону cd. известно, что cn: nd=3: 5. найти площадь трапеции abcd.
Проведем отрезок МК║АD. Так как М - середина АВ, МК- средняя линия трапеции. МК=(6+10):2=8
Примем коэффициент отношения СN:ND равным а.
Тогда СD=3a+5a=8a,
CK=KD=8a:2=4a, из чего следует NK=a.
Опустим высоту СН на АD.
Высота, проведенная из тупого угла равнобедренной трапеции, делит большее основание на отрезки, один из которых равен полуразности оснований, другой – их полусумме. =>
DH=(10-6):2=2, AH=MN=(10+6):2=8
МК║AD, СD – секущая => ∠CKM=∠CDA.
Прямоугольные ∆ СDH~∆ MKN по острому углу.
Из подобия следует: Отношение катетов к гипотенузе подобных прямоугольных треугольников равно.
NK:MK=HD:СD
a:8=2:8a
8a²=16 =>
a=√2 и СD=8√2
По т.Пифагора
CH=√(CD²-HD²)=√(128-4)=2√31
Площадь трапеции равна произведению высоты на полусумму оснований:
Проведем отрезок МК║АD. Так как М - середина АВ, МК- средняя линия трапеции. МК=(6+10):2=8
Примем коэффициент отношения СN:ND равным а.
Тогда СD=3a+5a=8a,
CK=KD=8a:2=4a, из чего следует NK=a.
Опустим высоту СН на АD.
Высота, проведенная из тупого угла равнобедренной трапеции, делит большее основание на отрезки, один из которых равен полуразности оснований, другой – их полусумме. =>
DH=(10-6):2=2, AH=MN=(10+6):2=8
МК║AD, СD – секущая => ∠CKM=∠CDA.
Прямоугольные ∆ СDH~∆ MKN по острому углу.
Из подобия следует: Отношение катетов к гипотенузе подобных прямоугольных треугольников равно.
NK:MK=HD:СD
a:8=2:8a
8a²=16 =>
a=√2 и СD=8√2
По т.Пифагора
CH=√(CD²-HD²)=√(128-4)=2√31
Площадь трапеции равна произведению высоты на полусумму оснований:
S=(2√31)•8=16√31 (ед. площади)