В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
1)проведи диаметр АО, соедини его конец с D. в образовавшемся прямоугольном (опирается на диаметр) треугольнике стороны 6, 8 и 10 (египетский)
2)2 вписанных угла, опирающихся на 1 дугу равны, найди 2 подобных по двум углам прямоугольных треугольника. Из подобия легко ищется боковая сторона
3)нижние отрезки диагоналей (AO и DO, если точка пересечений диагоналей О, равны 4 корня из 2 по "теореме Пифагора" или по легкой формуле для равнобедренного прямоугольного)
4) по теореме Пифагора ищем верхние отрезки диагоналей
5)по теореме Пифагора находим ВD
6)высоту находим, проведя ее из В по теореме Пифагора (нижний отрезок на АD равен 1, т.к. трапеция равнобедренная) По высоте находим площадь
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
∠BDC= ∠ABC ← условие
∠C _общий угол
BC/AC =DC/BC = BD / AB =P(∆BDC)/P(∆ABC)
BC² =AC *DC=12*3 =36 ⇒ BC=6 ; P(∆BDC)/P(∆ABC) =BC/AC=6/12 =1: 2
BC/AC = BD / AB ⇒ BD =(BC/AC)*ABС =(6/12)*8 = 4 ;
P(∆ ABC) =AB++AC+BC =8+12+6 =26 ;
P(∆BDC) = (1/2)*P(∆ABC) =(1/2)*26 =13 или 3+4+6 =13 .
5 корней из 2-бок,6-основание,7 -площадь
Объяснение:
основные моменты:
0)трапеция вписанная, а значит равнобедренная
1)проведи диаметр АО, соедини его конец с D. в образовавшемся прямоугольном (опирается на диаметр) треугольнике стороны 6, 8 и 10 (египетский)
2)2 вписанных угла, опирающихся на 1 дугу равны, найди 2 подобных по двум углам прямоугольных треугольника. Из подобия легко ищется боковая сторона
3)нижние отрезки диагоналей (AO и DO, если точка пересечений диагоналей О, равны 4 корня из 2 по "теореме Пифагора" или по легкой формуле для равнобедренного прямоугольного)
4) по теореме Пифагора ищем верхние отрезки диагоналей
5)по теореме Пифагора находим ВD
6)высоту находим, проведя ее из В по теореме Пифагора (нижний отрезок на АD равен 1, т.к. трапеция равнобедренная) По высоте находим площадь