Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
Проведем высоту через точку пересечения диагоналей.
Высота делит основания равнобедренной трапеции пополам.
Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x).
BC/2=x·tg((180°-α)/2)
AD/2=(h-x)· tg((180°-α)/2)
Средняя линия трапеции равна полусумме оснований.
MN=(BC+AD)/2=(BC/2)+(AD/2)=x·tg((180°-α)/2) +(h-x)· tg((180°-α)/2) =
=tg((180°-α)/2)(x+h-x)=h·tg((180°-α)/2)=h·tg(90°-(α/2))
Задача 1
Катет лежащий напротив угла 30 град. равен половине гипотенузы.
7,6*2=15,2 см длина гипотенузы.
ответ 15,2 см
Задача 2.
Если угол при вершине в равнобедренном треугольнике = 120, то углы при основании =(180-120)/2=30град.
Основание это искомая гипотенуза =5*sin 30=5*1/2=2.5 см
ответ 2,5 см
Задача 3.
Третий угол будет равен 30 град.
Мы знаем что катет лежащий напров угла 30 град равен половине гипотенузы. Составим уравнение.
х-длина гипотенузы
х/2 - длина катета
х+х/2=36
2х+х=72
3х=72
х=24 см длина гипотенузы
24/2=12 см меньший катет
ответ 12 см