Втрапеции abcd(bc||ad) проведена средняя линия mn(m∈ab,n∈cd). укажите, при каких условиях можно сделать вывод, что трапеция abcd лежит в данной плоскости α. ab⊂α и m∈α mn⊂α ac∩bd=o,ad⊂α,o∈α cd⊂α и n∈α
Окружность разделена точками А,В,С и D на отрезки (дуги) с градусной величиной 60°, 80°, 100° и 120° , то есть дуга АВ = 60°, ВС = 80°, CD = 100° и DA=120°. (так как 3+4+5+6=18, 360°/18=20°, ну и 20*3=60° и так далее...)
Углы, вписанные в окружность, опирающиеся на соответствующие дуги, равны половине их градусной величины.
Значит угол ВСD = (BA+AD)/2 = 180°/2=90°
угол АВС = (AD+DC)/2 = 220°/2=110°. Тогда угол МСВ = 90°(как смежный с 90°) а угол МВС = 70° (как смежный с 110°) (точка М - точка пересечения прямых АВ и CD) Тогда искомый угол ВМС = 180°-90°-70° =20°. (так как в треугольнике сумма углов = 180°)
Так как верхнее основание (BC) и боковая сторона (CD) равны, то трапецию можно разделить на треугольник и квадрат. Площадь квадрата равна верхнему основанию трапеции, умноженному на боковую сторону, а площадь треугольника (он будет прямоугольным, так как высота, опущенная из точки B к нижнему основанию перпендикулярна этому основанию) будет равна половине произведения катетов. Катет BH (высота) нам известен, и он равен 15, второй катет мы найдём из разности оснований трапеции 29 - 15 = 14 сантиметров. Площадь треугольника равна 14 * 15 / 2 = 7 * 15 = 105 сантиметров квадратных, а площадь квадрата равна 225 сантиметров квадратных. Сложим вместе площади фигур и получим площадь трапеции, которая равна 105 + 225 = 330 квадратных сантиметров
Post Scriptum - это решение верно, только, если у трапеции сторона CD перпендикулярна нижнему основанию!
Окружность разделена точками А,В,С и D на отрезки (дуги) с градусной величиной 60°, 80°, 100° и 120° , то есть дуга АВ = 60°, ВС = 80°, CD = 100° и DA=120°. (так как 3+4+5+6=18, 360°/18=20°, ну и 20*3=60° и так далее...)
Углы, вписанные в окружность, опирающиеся на соответствующие дуги, равны половине их градусной величины.
Значит угол ВСD = (BA+AD)/2 = 180°/2=90°
угол АВС = (AD+DC)/2 = 220°/2=110°. Тогда угол МСВ = 90°(как смежный с 90°) а угол МВС = 70° (как смежный с 110°) (точка М - точка пересечения прямых АВ и CD) Тогда искомый угол ВМС = 180°-90°-70° =20°. (так как в треугольнике сумма углов = 180°)
ответ 20°
Площадь трапеции равна произведению полусуммы оснований на высоту, в данном случае это
(29 + 15) * 15 / 2 = 44 * 15 / 2 = 22 * 15 = 330 сантиметров квадратных
Так как верхнее основание (BC) и боковая сторона (CD) равны, то трапецию можно разделить на треугольник и квадрат. Площадь квадрата равна верхнему основанию трапеции, умноженному на боковую сторону, а площадь треугольника (он будет прямоугольным, так как высота, опущенная из точки B к нижнему основанию перпендикулярна этому основанию) будет равна половине произведения катетов. Катет BH (высота) нам известен, и он равен 15, второй катет мы найдём из разности оснований трапеции 29 - 15 = 14 сантиметров. Площадь треугольника равна 14 * 15 / 2 = 7 * 15 = 105 сантиметров квадратных, а площадь квадрата равна 225 сантиметров квадратных. Сложим вместе площади фигур и получим площадь трапеции, которая равна 105 + 225 = 330 квадратных сантиметров
Post Scriptum - это решение верно, только, если у трапеции сторона CD перпендикулярна нижнему основанию!