В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Nikol3001
Nikol3001
07.09.2021 11:09 •  Геометрия

Втрапеции abcd боковая сторона ав равна диагонали bd. точка м - середина диагонали ас. прямая вм пересекает отрезок сd в точке е. докажите, что ве=се

Показать ответ
Ответ:
бооой
бооой
09.10.2020 11:43

Проведём CF || AB, F ∈ AD. AF || BC, т. к. AD || BC как основания трапеции, CF || AB по построению ⇒ ABCF - параллелограмм ⇒ AB = CF. Но AB = BD по условию, значит, BD = CF ⇒ BDFC - равнобедренная трапеция.

Так как M - середина диагонали AC параллелограмма ABCF ⇒ M ∈ BF. Тогда BF и CD - диагонали равнобедренной трапеции. Они образуют с основаниями равные углы, отсюда треугольник BEC - равнобедренный ⇒ BE = CE, что и требовалось доказать.


Втрапеции abcd боковая сторона ав равна диагонали bd. точка м - середина диагонали ас. прямая вм пер
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота