Две прямые лежат в одной плоскости, если смешанное произведение их направляющих векторов и третьего вектора, проведённого между двумя точками, лежащими на этих прямых, равно 0 . (При равенстве нулю смешанного произведения делаем вывод о компланарности трёх векторов.)
Из уравнения прямых можно выписать координаты направляющих векторов и координаты точек, лежащих на прямых .
ΔADC - равнобедренный (по рис.) ⇒ ∠B = ∠D (по свойству равнобедр. треуг.).
Отрезок CK - медина (делит противолежащую сторону на две равные) является высотой (по свойству равнобедр. треуг.) ⇒ ∠CKB = 90°.
∠CBK + ∠CKB + ∠BCK = 180° (по свойству треуг.)
∠CBK + 90° + 30° = 180°
∠CBK = 180° - (90° + 30°)
∠CBK = 60°
∠CBK и ∠CBA - смежные ⇒ ∠CBK + ∠CBA = 180°
60° + ∠CBA = 180°
∠CBA = 120°
ответ: ∠CBA = 120°.
Задание 7
Дано:
ΔCAD - равнобедренный
CA = DA
CB = BD
Найти:
∠CBA - ?
ΔCAD - равнобедр. (по рис.)
⇒ Отрезок BA - медианой (делит противолежащую сторону на две равные), является высотой (по свойству равнобедр. треуг.) и образует углы (∠CBA и ∠DBA) в 90°.
⇒ ∠CBA = 90°
ответ: ∠CBA = 90°.
Задание 8
Дано:
ΔDBK - равнобедр.
DM = MK
DB = BK
∠K = 70°
Найти:
∠CBA - ?
ΔDBE - равнобедр. (по рис.)
BM - медиана (делит противолежащую сторону на две равные)
⇒ BM - биссектриса и высота (по свойству равнобедр. треуг.)
Две прямые лежат в одной плоскости, если смешанное произведение их направляющих векторов и третьего вектора, проведённого между двумя точками, лежащими на этих прямых, равно 0 . (При равенстве нулю смешанного произведения делаем вывод о компланарности трёх векторов.)
Из уравнения прямых можно выписать координаты направляющих векторов и координаты точек, лежащих на прямых .
\begin{gathered}l_1:\; \frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{-2}\; \; ,\; \; \vec{s}_1=(2,-1,-2)\; ,\; \; M_1(1,-2,0) l_2:\; \frac{x+1}{1}=\frac{y+11}{2}=\frac{z+6}{1}\; \; ,\; \; \vec{s}_2=(1,2,1 )\; \; ,\; \; M_2(-1,-11,-6)overline {M_2M_1}=(1+1,-2+11,0+6)=(2,9,6)(\overline {M_2M_1},\vec{s}_1,\vec{s}_2)= \left|\begin{array}{ccc}2&9&6\\2&-1&-2\\1&2&1\end{array}\right|= 2(-1+2)-9(2+2)+6(4+1)=0\end{gathered}
l
1
:
2
x−1
=
−1
y+2
=
−2
z
,
s
1
=(2,−1,−2),M
1
(1,−2,0)
l
2
:
1
x+1
=
2
y+11
=
1
z+6
,
s
2
=(1,2,1),M
2
(−1,−11,−6)
M
2
M
1
=(1+1,−2+11,0+6)=(2,9,6)
(
M
2
M
1
,
s
1
,
s
2
)=
∣
∣
∣
∣
∣
∣
∣
2
2
1
9
−1
2
6
−2
1
∣
∣
∣
∣
∣
∣
∣
=2(−1+2)−9(2+2)+6(4+1)=0
Задание 6
Дано:
ΔADC - равнобедренный
BK = KD
AC = CD
∠BCK = 30°
Найти:
∠CBA - ?
ΔADC - равнобедренный (по рис.) ⇒ ∠B = ∠D (по свойству равнобедр. треуг.).
Отрезок CK - медина (делит противолежащую сторону на две равные) является высотой (по свойству равнобедр. треуг.) ⇒ ∠CKB = 90°.
∠CBK + ∠CKB + ∠BCK = 180° (по свойству треуг.)
∠CBK + 90° + 30° = 180°
∠CBK = 180° - (90° + 30°)
∠CBK = 60°
∠CBK и ∠CBA - смежные ⇒ ∠CBK + ∠CBA = 180°
60° + ∠CBA = 180°
∠CBA = 120°
ответ: ∠CBA = 120°.
Задание 7
Дано:
ΔCAD - равнобедренный
CA = DA
CB = BD
Найти:
∠CBA - ?
ΔCAD - равнобедр. (по рис.)
⇒ Отрезок BA - медианой (делит противолежащую сторону на две равные), является высотой (по свойству равнобедр. треуг.) и образует углы (∠CBA и ∠DBA) в 90°.
⇒ ∠CBA = 90°
ответ: ∠CBA = 90°.
Задание 8
Дано:
ΔDBK - равнобедр.
DM = MK
DB = BK
∠K = 70°
Найти:
∠CBA - ?
ΔDBE - равнобедр. (по рис.)
BM - медиана (делит противолежащую сторону на две равные)
⇒ BM - биссектриса и высота (по свойству равнобедр. треуг.)
⇒ ∠BME = 90°.
∠K + ∠BME + ∠MBE = 180° (по свойству треуг.)
⇒ 70° + 90° + ∠MBE = 180°
∠MBE = 180° - (70° + 90°)
∠MBE = 20°
Т.к. BM - биссектриса, то ∠DBE = 2∠MBE = 40°
∠DBE и ∠CBA - вертикальные
⇒ ∠DBE = ∠CBA = 40°
ответ: ∠CBA = 40°.