Втреугольник авс со сторонами ав = 5 см, вс = 8 см, ас = 9 см вписана окружность, касающаяся стороны ас в точке к. найдите расстояние от точки к до точки м биссектрисы вм. с обьяснением и рисунком !
ответ: S2 уменьшилась на 43,75% ; V2 уменьшился на 57,875% Объяснение:
25%=25/100=1/4 - на столько уменьшится каждая сторона и станет 1-1/4=3/4 от исходной.
При уменьшении всех сторон параллелепипеда уменьшаются и все его линейные размеры, т.е. высота самого параллелепипеда и его сторон. Получится фигура, подобная исходной с коэффициентом подобия k=3/4:1=3/4.
Отношение площадей подобных фигур равно квадрату коэффициента их подобия.
Примем площадь исходной фигуры равной Ѕ1, а площадь уменьшенной фигуры Ѕ2.
Тогда Ѕ2:Ѕ1=k^2=(3/4)^2=9/16
S2-S1=16/16-9/16=7/16 ( на столько уменьшилась площадь поверхности)
В процентном выражении это будет 7•100/16=43,75%
Отношение объемов подобных фигур равно кубу коэффициента их подобия:
Если объем исходной фигуры V1 и уменьшенной V2, то V2:V1=k^3=27/64 =>
V1-V2=64/64-27/64=37/64 ( на столько уменьшился объем.
ответ: S2 уменьшилась на 43,75% ; V2 уменьшился на 57,875% Объяснение:
25%=25/100=1/4 - на столько уменьшится каждая сторона и станет 1-1/4=3/4 от исходной.
При уменьшении всех сторон параллелепипеда уменьшаются и все его линейные размеры, т.е. высота самого параллелепипеда и его сторон. Получится фигура, подобная исходной с коэффициентом подобия k=3/4:1=3/4.
Отношение площадей подобных фигур равно квадрату коэффициента их подобия.
Примем площадь исходной фигуры равной Ѕ1, а площадь уменьшенной фигуры Ѕ2.
Тогда Ѕ2:Ѕ1=k^2=(3/4)^2=9/16
S2-S1=16/16-9/16=7/16 ( на столько уменьшилась площадь поверхности)
В процентном выражении это будет 7•100/16=43,75%
Отношение объемов подобных фигур равно кубу коэффициента их подобия:
Если объем исходной фигуры V1 и уменьшенной V2, то V2:V1=k^3=27/64 =>
V1-V2=64/64-27/64=37/64 ( на столько уменьшился объем.
В процентном выражении это 37•100:64=57,875%
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)