ΔАКС=ΔСМА по второму признаку равенства треугольников, так как АС- общая сторона, угол КСА=углу МАС (так как ΔАВС равнобедренный), угол КАС=углу МСА (так как АК и СМ биссектрисы).
Значит их высоты, проведённые из вершин М и К к стороне АС (обозначим их МН и КР) тоже равны.
В четырёхугольнике НМКР две стороны равны и параллельны, два угла прямые, значит НМКР- прямоугольник, значит КМ||АС
Дано: Δ АВС - равнобедренный;
<А = <С, точка О пересечение биссектрис АК и СМ.
Доказательство: АК = СМ, т. к. в равнобедренном тр-ке биссектрисы, проведенные к боковым сторонам равны (по теореме);
Четырехугольник АМКС, где СМ и АК - диагонали, Δ АОС равнобедренный , <ОАС = <МАО = <АСО = <КСО = х;
<АОС = <МОС = 180 - х - х = 180 - 2х.
ΔМОК - равнобедренный.
Т.к. АК = МС и АО = ОС , то ОМ = ОК, <ОМК = <ОКМ = (180 - <МОК)/2 = 180 - (180 - 2х)/2 = х, т.е <ОМК = <АСО и <ОАС = <ОКМ.
Если при пересечении двух прямых третьей внутренние разносторонние углы равны, то прямые параллельны (признаки параллельности прямых)
ЧТД
ΔАКС=ΔСМА по второму признаку равенства треугольников, так как АС- общая сторона, угол КСА=углу МАС (так как ΔАВС равнобедренный), угол КАС=углу МСА (так как АК и СМ биссектрисы).
Значит их высоты, проведённые из вершин М и К к стороне АС (обозначим их МН и КР) тоже равны.
В четырёхугольнике НМКР две стороны равны и параллельны, два угла прямые, значит НМКР- прямоугольник, значит КМ||АС