В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
caesar2
caesar2
22.04.2020 02:00 •  Геометрия

Втреугольнике abc на стороне ac выбрали точку k. точки p и q симметричны точке k относительно сторон ab и bc. оказалось, что прямая bk делит отрезок pq пополам. докажите, что угол kbc равен одному из углов треугольника kpq

Показать ответ
Ответ:
BaLaWkA2004
BaLaWkA2004
25.05.2020 16:12

Симметрия точек относительно прямой - это симметрия концов отрезка относительно серединного перпендикуляра. AB и BC - серединные перпендикуляры в треугольнике PKQ. Серединные перпендикуляры треугольника пересекаются в одной точке. Следовательно, прямая, проходящая через точку пересечения серединных перпендикуляров (B) и середину отрезка PQ, является перпендикуляром к PQ.

Пусть M - середина PQ, N - середина KQ. Треугольники KBN и KQM подобны (прямоугольные с общим углом), ∠KBC=∠KQP.


Втреугольнике abc на стороне ac выбрали точку k. точки p и q симметричны точке k относительно сторон
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота