Втреугольнике abc прямая проходит через потолок a в точке c в точке к и находит вк = ав, вак = 35 °, сак = 15 °. настройте углы треугольника.можно ответ с !
условие насчет "один из углов в два раза меньше другого" делает задачу элементарной. В самом деле, углы при основании равнобедренной трапеции равны, поэтому речь идет о внутренних односторонних углах при боковой стороне, сумма которых 180 градусов, поэтому угол при большем основании 60 градусов, а при меньшем - 120, конечно.
Но это означает, что трапеция является усеченным правильным треугольником. Поскольку диагональ трапеции является биссектрисой угла при основании, то попадает в середину стороны этого правильного треугольника. То есть верхнее основание - это средняя линяя правильного треугольника, до которого достраивается трапеция при продолжении боковых сторон. Отсюда большее основание равно удвоенному меньшему, то есть 16.
Площадь можно сосчитать по разному, например, как 3/4 площади правильного треугольника со стороной 16.
Однако можно и так - соединим середину большого основания с вершинами малого. Легко видеть, что трапеция разрезана на 3 равносторонних треугольника со стороной 8. Площадь каждого из них 8^2*корень(3)/4 = 16*корень(3), а площадь трапеции 48*корень(3).
Теперь заодно видно, что высота КЕ делит большое основание в отношении 3/1.
Это очень сложная задача, у неё есть геометрическое решение, но очень нудное.
Алгебраическое решение такое - если стороны a b c, и биссектрисы la и lb выходят из концов с (то есть это биссектрисы углов А и В), то
la = b*c - a^2*b*c/(b + c)^2; ()
lb = a*c - a*b^2*c/(a + c)^2;
Приравниваем, получаем
a*c - a*b^2*c/(a + c)^2 = b*c - a^2*b*c/(b + c)^2;
a - b = a*b*(b/(a + c)^2 - a/(b + c)^2);
Предположим, что a > b;
Тогда левая часть равенства положительна, а правая отрицательна, и получается противоречие. Поэтому a = b;
Предполагается, что вы умеете вычислять длину биссектрисы по сторонам треугольника, то есть знаете формулу ().
условие насчет "один из углов в два раза меньше другого" делает задачу элементарной. В самом деле, углы при основании равнобедренной трапеции равны, поэтому речь идет о внутренних односторонних углах при боковой стороне, сумма которых 180 градусов, поэтому угол при большем основании 60 градусов, а при меньшем - 120, конечно.
Но это означает, что трапеция является усеченным правильным треугольником. Поскольку диагональ трапеции является биссектрисой угла при основании, то попадает в середину стороны этого правильного треугольника. То есть верхнее основание - это средняя линяя правильного треугольника, до которого достраивается трапеция при продолжении боковых сторон. Отсюда большее основание равно удвоенному меньшему, то есть 16.
Площадь можно сосчитать по разному, например, как 3/4 площади правильного треугольника со стороной 16.
Однако можно и так - соединим середину большого основания с вершинами малого. Легко видеть, что трапеция разрезана на 3 равносторонних треугольника со стороной 8. Площадь каждого из них 8^2*корень(3)/4 = 16*корень(3), а площадь трапеции 48*корень(3).
Теперь заодно видно, что высота КЕ делит большое основание в отношении 3/1.