По условию трапеция - равнобедренная. Значит, <A=<E, <B=<C. Построим высоты трапеции ВН и СН1. Т.к. трапеция равнобедренная, то АН=ЕН1. Выразим эти отрезки: НН1=ВС=а, АН=ЕН1=(АЕ-НН1):2=(2а-а):2=а/2 Рассмотрим прямоугольный треугольник АНВ. Здесь катет АН равен половине гипотенузы АВ (АН=а/2, АВ=а), следовательно, он лежит против угла в 30 градусов: <ABH=30°, тогда<ABC=90+30=120°. В трапеции <B=<C=120°. В этом же прямоугольном треугольнике АНВ можно найти угол А, зная, что сумма острых углов прямоугольного треугольника равна 90 градусов: <A=90-<ABH=90-30=60°, <A=<E=60.
Построим высоты трапеции ВН и СН1. Т.к. трапеция равнобедренная, то АН=ЕН1. Выразим эти отрезки:
НН1=ВС=а,
АН=ЕН1=(АЕ-НН1):2=(2а-а):2=а/2
Рассмотрим прямоугольный треугольник АНВ. Здесь катет АН равен половине гипотенузы АВ (АН=а/2, АВ=а), следовательно, он лежит против угла в 30 градусов:
<ABH=30°, тогда<ABC=90+30=120°. В трапеции <B=<C=120°.
В этом же прямоугольном треугольнике АНВ можно найти угол А, зная, что сумма острых углов прямоугольного треугольника равна 90 градусов:
<A=90-<ABH=90-30=60°, <A=<E=60.
Прямая призма АВСА₁В₁С₁ вписана в цилиндр. АВ = ВС = 6, ∠АВС = 120°, АА₁ = 10.
Найти площадь боковой поверхности цилиндра.
ответ: 120π
Объяснение:
Если прямая призма вписана в цилиндр, то высота цилиндра равна длине бокового ребра призмы:
Н = АА₁ = 10,
а основания цилиндра описаны около оснований призмы.
ΔАВС равнобедренный, тогда
∠А = ∠С = (180° - 120°)/2 = 30°
Радиус окружности, описанной около треугольника, можно найти по формуле:
R = AB / (2 sin∠C) = 6 / (2 · 1/2) = 6
Площадь боковой поверхности цилиндра:
Sбок.цил. = 2πR · H = 2π · 6 · 10 = 120π кв. ед.