1) Известно, что у вписанного в окружность четырехугольника сумма противоположных углов равна 180 градусов. Последовательно вычитаем из 180 21 и ли 49 и находим больший угол. 2) В правильном многоугольнике углы и стороны равны. В правильном многоугольнике, вписанном в окружность углы лежат на окружности, следовательно отрезки соединяющие углы с центром окружности будут радиусы. Все проведенные радиусы к углам правильного многоугольника, деля его на равнобедренные треугольники, одновременно деля углы пополам. Следовательно углы при основании этих треугольников будут равны 70 гр. Следовательно углы при вершине этих треугольников будут равны 180-70-70=40 гр. Их общая сумма равна 360 гр. Отсюда 360:40=9 сторон.
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
Последовательно вычитаем из 180 21 и ли 49 и находим больший угол.
2) В правильном многоугольнике углы и стороны равны. В правильном многоугольнике, вписанном в окружность углы лежат на окружности, следовательно отрезки соединяющие углы с центром окружности будут радиусы. Все проведенные радиусы к углам правильного многоугольника, деля его на равнобедренные треугольники, одновременно деля углы пополам. Следовательно углы при основании этих треугольников будут равны 70 гр. Следовательно углы при вершине этих треугольников будут равны 180-70-70=40 гр. Их общая сумма равна 360 гр. Отсюда 360:40=9 сторон.
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
∠BDC= ∠ABC ← условие
∠C _общий угол
BC/AC =DC/BC = BD / AB =P(∆BDC)/P(∆ABC)
BC² =AC *DC=12*3 =36 ⇒ BC=6 ; P(∆BDC)/P(∆ABC) =BC/AC=6/12 =1: 2
BC/AC = BD / AB ⇒ BD =(BC/AC)*ABС =(6/12)*8 = 4 ;
P(∆ ABC) =AB++AC+BC =8+12+6 =26 ;
P(∆BDC) = (1/2)*P(∆ABC) =(1/2)*26 =13 или 3+4+6 =13 .