По данным условия и рисунка многогранние ABCF - треугольная пирамида.
а) Прямые АВ и В1С1 - скрещивающиеся по определению: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Так как В1С1 параллельна ВС, то угол между скрещивающимися прямыми АВ и В1С1 равен углу между пересекающимися прямыми АВ и ВС. То есть это угол АВС = 80° (дано).
б) Аналогично. Так как А1С1 параллельна АС, то угол между скрещивающимися прямыми А1С1 и ВС равен углу между пересекающимися прямыми АС и ВС. То есть это угол АСВ. В треугольнике АВС по сумме внутренних углов треугольника
В зависимости от расположения углов на прямой k может быть два верных варианта ответа: 3) и 1).
1. Углы α и β не являются соответственными. Соответственным для α будет угол, смежный к β (γ). Так как смежные углы в сумме составляют 180º, γ = 180 - 135 = 45º, т.е. равен углу α. Так как прямые считаются параллельными, если их соответственные углы равны, то верен вариант ответа 3).
2. Углы α и β - соответственные. Угол γ, смежный β, равен 45º = α. Если совместить прямые n и k, они образуют угол, в сумме с γ и α составляющий развернутый (180º). Т.е. угол между n и k равен 180 - 45 - 45 = 90º. Значит, эти прямые перпендикулярны и верен вариант ответа 1).
а) 80°. б) 70°.
Объяснение:
По данным условия и рисунка многогранние ABCF - треугольная пирамида.
а) Прямые АВ и В1С1 - скрещивающиеся по определению: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Так как В1С1 параллельна ВС, то угол между скрещивающимися прямыми АВ и В1С1 равен углу между пересекающимися прямыми АВ и ВС. То есть это угол АВС = 80° (дано).
б) Аналогично. Так как А1С1 параллельна АС, то угол между скрещивающимися прямыми А1С1 и ВС равен углу между пересекающимися прямыми АС и ВС. То есть это угол АСВ. В треугольнике АВС по сумме внутренних углов треугольника
∠АСВ = 180° - 30° - 80° = 70°.
Значит искомый угол равен 70°.
Прямая k для прямых n и m является секущей.
В зависимости от расположения углов на прямой k может быть два верных варианта ответа: 3) и 1).
1. Углы α и β не являются соответственными. Соответственным для α будет угол, смежный к β (γ). Так как смежные углы в сумме составляют 180º, γ = 180 - 135 = 45º, т.е. равен углу α. Так как прямые считаются параллельными, если их соответственные углы равны, то верен вариант ответа 3).
2. Углы α и β - соответственные. Угол γ, смежный β, равен 45º = α. Если совместить прямые n и k, они образуют угол, в сумме с γ и α составляющий развернутый (180º). Т.е. угол между n и k равен 180 - 45 - 45 = 90º. Значит, эти прямые перпендикулярны и верен вариант ответа 1).
Объяснение:
сверху