Вычисли периметр треугольника BAC и сторону BA, если CF — медиана, CB=AC=150см иAF=100см. (Укажи длину и единицу измерения со строчной (маленькой) буквы.)
1. это геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки 2. это сумма длин всех его сторон 3.которые совпадают при наложении 4.это утверждения, справедливость которого устанавливается путем рассуждения. эти рассуждения и есть док-ва теоремы 5.это прямая, пересекающую другую прямую под углом 90 градусов 6.это отрезок соединяющий вершину треугольника с серединой противоположной стороны. 3 7.это прямая проходящая через вершину угла и делящая его пополам. 3 8. перпендикуляр проведенный из вершины к прямой,содержащей противоположную сторону.3 9.у которого две стороны равны 10.боковые 11.у которого все стороны равны 12. в равнобедренном треугольники углы при основании равны 13.биссектриса равнобедренного треугольника так же может являться и высотой, и медианой 14.если две стороны и угол между ними одного треугольника соответственно равны двум углам и углу между ними другого треугольника, то такие треугольники равны 15.если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны 16. если три стороны одного треугольника соответственно раны трем сторонам другого треугольника, то такие треугольники равны. 17. это геометрическая фигура состоящая из точек, равноудаленных от заданной точки 18. это точка, от которой расположены все точки окружности 19. отрезок соединяющий центр окружности с любой точкой окружности 20. это хорда проходящая через центр 21. это отрезок соединяющие любые две точки окружности
Можно и не привязываться к системе координат.. но суть остается прежней) Пусть вершина - А, концы проекций х на ребра: M,K,N. Пусть АМ = 12, АК = 6, AN = 4. Надо найти длину AB = x. Чтобы найти x, надо найти треугольник с прямым углом (так как больше углов не дано, а использовать т. Пифагора легко), в котором известны две стороны. Логично, что можно использовать одну из проекций как высоту, которую опустим на плоскость двух других проекций. Пусть этой высотой будет отрезок, параллельный AK - BC, C принадлежит (AMN). BC = 6см. Тогда отрезок CM = NA так как AM || CN так как они оба перпендикулярны AN (AM - по условию, а CN - по теореме о трех перпендикулярах) Тогда образуется прямоугольный треугольник CMA, у которого известны два катета - AM = 12, CM = 4 Тогда AC^2 = 12^2 + 4^2 Зная AC, можно найти AB, то есть x: AB^2 = AC^2 + BC^2 = 12^2 + 4^2 + 6^2 = 196 => AB = 14см x=14см.
2. это сумма длин всех его сторон
3.которые совпадают при наложении
4.это утверждения, справедливость которого устанавливается путем рассуждения. эти рассуждения и есть док-ва теоремы
5.это прямая, пересекающую другую прямую под углом 90 градусов
6.это отрезок соединяющий вершину треугольника с серединой противоположной стороны. 3
7.это прямая проходящая через вершину угла и делящая его пополам. 3
8. перпендикуляр проведенный из вершины к прямой,содержащей противоположную сторону.3
9.у которого две стороны равны
10.боковые
11.у которого все стороны равны
12. в равнобедренном треугольники углы при основании равны
13.биссектриса равнобедренного треугольника так же может являться и высотой, и медианой
14.если две стороны и угол между ними одного треугольника соответственно равны двум углам и углу между ними другого треугольника, то такие треугольники равны
15.если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны
16. если три стороны одного треугольника соответственно раны трем сторонам другого треугольника, то такие треугольники равны.
17. это геометрическая фигура состоящая из точек, равноудаленных от заданной точки
18. это точка, от которой расположены все точки окружности
19. отрезок соединяющий центр окружности с любой точкой окружности
20. это хорда проходящая через центр
21. это отрезок соединяющие любые две точки окружности
Пусть вершина - А, концы проекций х на ребра: M,K,N.
Пусть АМ = 12, АК = 6, AN = 4.
Надо найти длину AB = x.
Чтобы найти x, надо найти треугольник с прямым углом (так как больше углов не дано, а использовать т. Пифагора легко), в котором известны две стороны.
Логично, что можно использовать одну из проекций как высоту, которую опустим на плоскость двух других проекций. Пусть этой высотой будет отрезок, параллельный AK - BC, C принадлежит (AMN). BC = 6см.
Тогда отрезок CM = NA так как AM || CN так как они оба перпендикулярны AN (AM - по условию, а CN - по теореме о трех перпендикулярах)
Тогда образуется прямоугольный треугольник CMA, у которого известны два катета - AM = 12, CM = 4
Тогда AC^2 = 12^2 + 4^2
Зная AC, можно найти AB, то есть x:
AB^2 = AC^2 + BC^2 = 12^2 + 4^2 + 6^2 = 196 => AB = 14см
x=14см.