Вычисли площадь и сторону квадрата, если диагональ квадрата равна 13√2 м Сторона квадрата равна__м. Площадь квадрата равна__м^2 (в квадрате) (Если необходимо, ответ округли до сотых.)
MN II AB как средняя линия в треугольнике ABC; ML II CD как средняя линия BCD; KL II AB как средняя линия ABD; KN II CD как средняя линия ACD; Поэтому противоположные стороны четырехугольника KLMN параллельны, то есть это параллелограмм. По условию его диагонали KM и LN перпендикулярны, то есть это - ромб, все его стороны равны. Так же по условию KN = LN, то есть треугольник KNL равносторонний. Следовательно ∠NKL = 60°; Так как стороны этого угла параллельны сторонам искомого угла (то есть KL II AB; KN II CD), то прямые AB и CD тоже образуют угол 60°.
ML II CD как средняя линия BCD;
KL II AB как средняя линия ABD;
KN II CD как средняя линия ACD;
Поэтому противоположные стороны четырехугольника KLMN параллельны, то есть это параллелограмм.
По условию его диагонали KM и LN перпендикулярны, то есть это - ромб, все его стороны равны.
Так же по условию KN = LN, то есть треугольник KNL равносторонний.
Следовательно ∠NKL = 60°;
Так как стороны этого угла параллельны сторонам искомого угла (то есть KL II AB; KN II CD), то прямые AB и CD тоже образуют угол 60°.
AO = корень из 29 (образующая)
Объяснение:
1.
r - малый радиус, равный 2
R - больший радиус, равный 5
ОО1 - высота, равная 4
АВ - образующая конуса (l)
Sус.б.п. = пи*(r+R)*l
Рассмотрим прямоугольную трапецию АВОО1. ВО=2, АО1=5, ОО1=4.
Проведем высоту ВК, равную ОО1.
Рассмотрим треугольник АКВ - прямоугольный. АК = АО1 - ВО = 3
АВ^2 = BK^2 + AK^2
АВ = 5
Sус.б.п. = пи*(2+5)*5 = 35пи
3.
R = 5 см
ОО1 = 2 см
АОВ - осевое сечение
Рассмотрим треугольник АОВ.
S = 1/2 * АВ * ОО1
АВ = 2R = 2*5=10 см
S = 1/2 * 10 * 2 = 10 см^2
Рассмотрим треугольник АО1О - прямоугольный.
АО^2 = OO1^2 + AO1^2