Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника являются вершинами параллелограмма Вариньона.
Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника . Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.
9. BF-медиана и высота в ΔАВD, ΔАВD- равнобедренный⇒
∠BAD=∠BDA=70°, ∠ABD=180°-2*70°=180°-140°=40°, т.к. ΔАВD- равнобедренный⇒BF- биссектриса. Поэтому ∠ABF=∠DBF=40°/2=20°; в параллелограмме АВСD
∠A=∠B=70°, т.к. эти углы противолежащие,
∠C=∠D=180°-70°=110°, как углы, прилежащие к одной стороне, в сумме дают 180°.
10. В прямоугольнике MNPK ∠M=∠N=∠P=∠K=90°, ∠NKP=∠KNM=10°, как внутренние накрест лежащие при NP║PK и секущей NK
Т.к. NK=MP, то MO=РО, NO=KO, т.к. диагонали в прямоугольнике равны и в точке пересечения делятся пополам, то ΔNOM- равнобедренный, и ∠ONM=∠OMN=10°, ∠NOM=180°-2*10°=160°,
∠NOM=∠РОК=160°, как вертикальные, ∠РОN=180°-160°=20°, по свойству смежных. ∠РОN=∠МОК=20°как вертикальные.
В ΔNKM ∠NKM=90°-10°=80°, т.к. сумма острых в прямоугольном треугольнике равна 90°.
∠ОМК=90°-10°=80°, т.к ОК=ОМ, то ∠ОКМ=80°, аналогично, ∠OPN=∠ONP=80°
Да, это параллелограмм
Объяснение:
Потаму что
Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.
Теоремы (свойства параллелограмма):
В параллелограмме противоположные стороны равны и противоположные углы равны
Диагонали параллелограмма точкой пересечения делятся пополам
Углы, прилежащие к любой стороне, в сумме равны
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника являются вершинами параллелограмма Вариньона.
Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника . Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.
9. BF-медиана и высота в ΔАВD, ΔАВD- равнобедренный⇒
∠BAD=∠BDA=70°, ∠ABD=180°-2*70°=180°-140°=40°, т.к. ΔАВD- равнобедренный⇒BF- биссектриса. Поэтому ∠ABF=∠DBF=40°/2=20°; в параллелограмме АВСD
∠A=∠B=70°, т.к. эти углы противолежащие,
∠C=∠D=180°-70°=110°, как углы, прилежащие к одной стороне, в сумме дают 180°.
10. В прямоугольнике MNPK ∠M=∠N=∠P=∠K=90°, ∠NKP=∠KNM=10°, как внутренние накрест лежащие при NP║PK и секущей NK
Т.к. NK=MP, то MO=РО, NO=KO, т.к. диагонали в прямоугольнике равны и в точке пересечения делятся пополам, то ΔNOM- равнобедренный, и ∠ONM=∠OMN=10°, ∠NOM=180°-2*10°=160°,
∠NOM=∠РОК=160°, как вертикальные, ∠РОN=180°-160°=20°, по свойству смежных. ∠РОN=∠МОК=20°как вертикальные.
В ΔNKM ∠NKM=90°-10°=80°, т.к. сумма острых в прямоугольном треугольнике равна 90°.
∠ОМК=90°-10°=80°, т.к ОК=ОМ, то ∠ОКМ=80°, аналогично, ∠OPN=∠ONP=80°