Угол между плоскостями - угол между двумя перпендикулярами к линии пересечения плоскостей, проведенных к одной точкею
Так как треугольники АВС и АКС - равнобедренные, то эти перпендикуляры будут исходить из вершин К и В соответственно.
Обозначим точку, к которой проведены перпендикуляры, Н, тогда угол КНВ = 60°.
Рассмотрим треуг-к АВС: по формуле Герона его площадь равна корень из (р (р-АВ) (р-ВС) (р-АС)) , р - полупериметр => корень_из_(32(32-20)(32-20)(32-24))=192(кв. ед. )
Площадь также равна: (1/2)АС*ВН => ВН=2*192/24=16.
Аналогично, для треугольника АКС - площадь АКС равна: корень_из_(27(27-15)(27-15)(27-24))=108 (кв. ед. )
КН = 2*108/24=9.
Рассмотрим треуг-к КНВ. По теор. косинусов: КВ^2=КН^2+ВН^2-2*КН*ВН*косинус (60°);
13,89
Объяснение:
Угол между плоскостями - угол между двумя перпендикулярами к линии пересечения плоскостей, проведенных к одной точкею
Так как треугольники АВС и АКС - равнобедренные, то эти перпендикуляры будут исходить из вершин К и В соответственно.
Обозначим точку, к которой проведены перпендикуляры, Н, тогда угол КНВ = 60°.
Рассмотрим треуг-к АВС: по формуле Герона его площадь равна корень из (р (р-АВ) (р-ВС) (р-АС)) , р - полупериметр => корень_из_(32(32-20)(32-20)(32-24))=192(кв. ед. )
Площадь также равна: (1/2)АС*ВН => ВН=2*192/24=16.
Аналогично, для треугольника АКС - площадь АКС равна: корень_из_(27(27-15)(27-15)(27-24))=108 (кв. ед. )
КН = 2*108/24=9.
Рассмотрим треуг-к КНВ. По теор. косинусов: КВ^2=КН^2+ВН^2-2*КН*ВН*косинус (60°);
КВ^2 = 81+256 - 2*9*16*0,5 = 193 => КВ=корень_из_(193)=13,89.
ответ: КВ=13,89.
Дано:
AO=CO
угол BAO = углу DCO
угол OCD=37⁰
угол ODC=63⁰
угол COD=80⁰
Док-ть:
тр. AOB = тр. COD
Найти:
углы AOB, ABO, BAO - ?
Док-во:
Рассмотрим тр. AOB и COD
- AO=OC - по условию
- угол BAO = углу DCO - по условию
- угол AOB = углу COD - как вертикальные
След-но треугольники равны по стороне и двум прилежащим к ней углам.
тр. AOB = тр. COD ч.т.д.
угол BAO = углу DCO - по условию ⇒ угол BAO = 37⁰
угол COD = углу AOB - из док-ва ⇒ угол AOB = 80⁰
угол угол ABO = 180⁰-37⁰-80⁰ = 63⁰
Из вышеописанного док-ва тр. AOB = тр. COD:
угол BAO = углу DCO = 37⁰
угол COD = углу AOB = 80⁰
угол CDO = углу ABO = 63⁰