Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
Нехай дано ∆ АВС рівнобедрений, АС — основа.
Вписане коло, т. D, E, F — точки дотику. AF = 5 см, BD = 6см
Знайдемо P∆ АВС
OF - радіус вписаного кола, тоді OF _|_ AC.
BF _|_ AC — висота, проведена до основи рівнобедреного ∆ АВС, тоді BF– медіана, AF = FC = 5 см. AC = AF + FC; AC = 5 + 5 = 10 см.
AF = AD = 5 см (як відрізки дотичних, проведених з т. А до кола).
BD = DF = 6 см; СF = CE = 5 см (як відрізки дотичних, проведених
з точок В і С до кола). AB = AD + DB; AB = 5 + 6 = 11 см. AB = ВС = 11 см (∆АВС - рівнобедрений). Р∆авс - АВ + BC + AC;
P∆ABC = 11 + 11 + 10 = 32 см
Відповідь: Р∆ABC 32 см.
все переписуй:)