Выполните построение и решите задачу. Прямые АВ, КТ и СЕ пересекаются в точке О. ⦟ АОК = 20°, ⦟ СОК = 60°.Вычислите ⦟ АОЕ и ⦟ ЕОТ.Определите вид угла СОВ.
Виносимо 24 за дужки, і перемножуємо праву і ліву частину рівняння за правилом пропорції. У нас виходить квадратне рівняння. Вирішуємо його, і отримуємо два Vпароплава. Одне негативне - ця відповідь не підходить. А друге 29.6 км/год.
Графиком линейной функции y=kx является прямая, проходящая через начало координат. функции y=kx , так как проходит через начало координат. Нужно лишь определить значение коэффициента k . Из формулы линейной функции y=kx получим, что k=yx .
Поэтому для определения коэффициента k достаточно взять любую точку на прямой и найти отношение ординаты этой точки к её абсциссе.
Прямая проходит через точку M(4;2) , а для этой точки имеем 24=0,5 . Значит, k=0,5 , и данная прямая является графиком линейной функции y=0,5x .
График линейной функции y=kx обычно строят так: берут точку (1;k) (если x=1 , то из равенства y=kx выводим, что y=k ) и проводят прямую через эту точку и начало координат. Иногда вместо точки (1;k) можно взять другую точку, более удобную.
29,6 км/год
Объяснение:
Час шляху дорівнюватиме часу вниз за течією + час вгору за течією. Тобто: 24 / (Vпароплава + 4) + 24 / (Vпароплава - 4) = 2,5 год.
Приводимо до спільного знаменника і отримуємо:
(24(Vпароплава + 4) + 24(Vпароплава - 4)) / (Vпароплава + 4)(Vпароплава - 4) = 2,5
Виносимо 24 за дужки, і перемножуємо праву і ліву частину рівняння за правилом пропорції. У нас виходить квадратне рівняння. Вирішуємо його, і отримуємо два Vпароплава. Одне негативне - ця відповідь не підходить. А друге 29.6 км/год.
Вот и ответ.
Из формулы линейной функции y=kx получим, что k=yx .
Поэтому для определения коэффициента k достаточно взять любую точку на прямой и найти отношение ординаты этой точки к её абсциссе.
Прямая проходит через точку M(4;2) , а для этой точки имеем 24=0,5 . Значит, k=0,5 , и данная прямая является графиком линейной функции y=0,5x .
График линейной функции y=kx обычно строят так: берут точку (1;k) (если x=1 , то из равенства y=kx выводим, что y=k ) и проводят прямую через эту точку и начало координат.
Иногда вместо точки (1;k) можно взять другую точку, более удобную.