Высота правильной усеченной четырехугольной пирамиды равна 7см, стороны оснований 10см и 2 см . Найдите:
1)длину бокового ребра;
2)площадь сечения, проходящего через середину высоты параллельного основания;
3)высоту полной пирамиды, из которой получилась данная усеченная пирамида.
ответ дать с рисунком и со всеми пояснениями.
3 пары равных треугольников дна рисунке.
Объяснение:
1.
∠AEB = 180° - ∠BED, так как эти углы смежные,
∠AEC = 180° - ∠CED, так как эти углы смежные,
по условию ∠BED = ∠CED, значит и ∠АЕВ = ∠АЕС.
2.
Рассмотрим ΔАЕВ и ΔАЕС:
∠ВАЕ = ∠САЕ по условию,
∠АЕВ = ∠АЕС (доказано в п. 1),
АЕ - общая сторона, значит
ΔАЕВ = ΔАЕС по стороне и двум прилежащим к ней углам.
В равных треугольниках против равных углов лежат равные стороны, следовательно АВ = АС и ВЕ = СЕ.
3.
Рассмотрим ΔBED и ΔCED:
ВЕ = СЕ (доказано в п. 2),
∠BED = ∠CED по условию,
ED - общая сторона, значит
ΔBED = ΔCED по двум сторонам и углу между ними.
Из равенства треугольников следует, что BD = CD.
4.
Рассмотрим ΔABD и ΔACD:
АВ = АС (доказано в п. 2),
BD = CD (доказано в п. 3),
AD - общая сторона, значит
ΔABD и ΔACD по трем сторонам.
Вписанные углы РMN и KNM опираются на равные хорды. Следовательно, дуги, стягиваемые этим хордами, равны. Вписанные углы, опирающиеся на равные дуги (или на равные хорды), равны.
∠РMN=∠KNM
Проведем хорды МР и КN.
В треугольниках MPN и MKN вписанные ∠Р = ∠К (опираются на диаметр).⇒
Прямоугольные ∆ МРN=∆ MKN по острому углу и общей гипотенузе.
Отсюда следует равенство PNM=KMN
Эти углы - накрестлежащие при пересечении РN и MK секущей MN.
Если при пересечении двух прямых секущей накрестлежащие углы равны. эти прямые - параллельны. Доказано.