Высота прямоугольного параллелепипеда равна 4,а диагональ b1d равна корень из 52. найдите расстояние от вершины b1 до центра о нижнего основания параллелепипеда. , .
Объяснение: высота данного треугольника делит его на 2 прямоугольных треугольника, в котором боковая сторона- это гипотенуза, а высота- это катет. По теореме Пифагора найдём 2-й катет получившегося прямоугольного треугольника:
13²-12²=√(169-144)=√25=5см
Мы нашли часть основания первоначального треугольника и, зная, что он равнобедренный, то высота, проведённая к основанию, является ещё и медианой и делит это основание пополам, поэтому часть найденного основания равна второй его части и равна 5см. Поэтому основание треугольника будет: 5×2=10см; основание=10см.
Зная, что площадь треугольника равна полупроизведению его высоты на основание, к которому проведена, найдём площадь треугольника по формуле: ½×а×h, где h-высота, "а"-сторона, к которой проведена высота:
Найдем второй катет первого треугольника. Теорема Пифагора, квадрат гипотенузы равен сумме квадратов катетов
a²=5²-4²
a²=25-16
a²=9
a=√9
a=3
Второй катет 3
Сумма внутренних углов треугольника 180°.
У первого треугольника один угол 90°, второй 53°. Найдем меньший угол первого треугольника.
180°-90°-53°=37°.
Теперь найдем гипотенузу второго треугольника по теореме Пифагора.
c²=24²+18²
c²=576+324
c²=900
c=√900
c=30
Разделим все стороны второго на соответственные (больший делим на большую сторону, меньший на меньшую и т.д.) стороны первого.
Так как они все пропорциональны (признак подобия треугольников), эти два треугольника подобные, то есть углы одинаковые. Следовательно, меньший угол второго треугольника тоже 37°.
2.
Найдем катет первого треугольника по теореме Пифагора
a²=10²-8²
a²=100-64
a²=36
a=√36
a=6
Во втором треугольнике найдем гипотенузу по той же теореме.
c²=12²+16²
c²=144+256
c²=400
c=√400
c=20
Разделим соответственные стороны второго на первый:
Все стороны пропорциональны, значит они подобные. Меньший угол второго треугольника 36°.
ответ: S=60см²
Объяснение: высота данного треугольника делит его на 2 прямоугольных треугольника, в котором боковая сторона- это гипотенуза, а высота- это катет. По теореме Пифагора найдём 2-й катет получившегося прямоугольного треугольника:
13²-12²=√(169-144)=√25=5см
Мы нашли часть основания первоначального треугольника и, зная, что он равнобедренный, то высота, проведённая к основанию, является ещё и медианой и делит это основание пополам, поэтому часть найденного основания равна второй его части и равна 5см. Поэтому основание треугольника будет: 5×2=10см; основание=10см.
Зная, что площадь треугольника равна полупроизведению его высоты на основание, к которому проведена, найдём площадь треугольника по формуле: ½×а×h, где h-высота, "а"-сторона, к которой проведена высота:
½×10×12=60см²; S=60см²
1.
Найдем второй катет первого треугольника. Теорема Пифагора, квадрат гипотенузы равен сумме квадратов катетов
a²=5²-4²
a²=25-16
a²=9
a=√9
a=3
Второй катет 3
Сумма внутренних углов треугольника 180°.
У первого треугольника один угол 90°, второй 53°. Найдем меньший угол первого треугольника.
180°-90°-53°=37°.
Теперь найдем гипотенузу второго треугольника по теореме Пифагора.
c²=24²+18²
c²=576+324
c²=900
c=√900
c=30
Разделим все стороны второго на соответственные (больший делим на большую сторону, меньший на меньшую и т.д.) стороны первого.
Так как они все пропорциональны (признак подобия треугольников), эти два треугольника подобные, то есть углы одинаковые. Следовательно, меньший угол второго треугольника тоже 37°.
2.
Найдем катет первого треугольника по теореме Пифагора
a²=10²-8²
a²=100-64
a²=36
a=√36
a=6
Во втором треугольнике найдем гипотенузу по той же теореме.
c²=12²+16²
c²=144+256
c²=400
c=√400
c=20
Разделим соответственные стороны второго на первый:
Все стороны пропорциональны, значит они подобные. Меньший угол второго треугольника 36°.