Пусть в треугольнике ABC с основанием AC проведена медиана AD. Медиана делит периметр треугольника на две части, одна из которых - AB+BD, а другая - AC+CD. Пусть AC=a, AB=BC=2b, BD=CD=b Тогда возможны 2 варианта: 2b+b=15, a+b=6 или 2b+b=6, a+b=15. Решив первую систему уравнений, получим b=5 и a=1, то есть длина основания 1, а длина боковой стороны 5*2=10. Решив вторую систему, получим b=2, a=13, то есть длина основания равна 13, а длина боковой стороны 4. Но этот вариант невозможен, так как в любом треугольнике длина одной стороны, меньше суммы длин двух других, то есть треугольника со сторонами 13, 4, 4 не существует. Значит, длина равна 10.
Данные точки A (-3; 2), B (0; 4), C (4; -2) Найдите
1) Координаты вектора AB и CA
2) Модули вектора AB и CA
3) Координаты вектора KP = 4 AB-3 CA
4) Косинус угла между векторами AB и CA.
Объяснение:
Данные точки A (-3; 2), B (0; 4), C (4; -2)
1) Координаты вектора
AB (0+3;4-2) или АВ(3;2) ;
CA(-3-4;2-(-2)) или СА(-7;4) .
2) Модули вектора AB= √(3²+2²)=√13.
CA =√( (-7)²+4²)=√(49+16)=√65
3) Координаты вектора KP = 4 AB-3 CA
4АВ(4*3; 4*2) или 4АВ(12;8) ;
3СА(-7*3;4*3) или 3СА(-21; 12).
КР(12-(-21) ;8-12) или КР(33 ;-4)
4) Вектора АВ(3;2) ; СА(-7;4) .
Скалярное произведение векторов
АВ*СА=|АВ|*|СА|*cos(АВ;СА),
3*(-7)+2*4=√13*√65*cos(АВ;СА),
-13=13√5*cos(АВ;СА),
cos(АВ;СА)=-(13/13√5)
cos(АВ;СА)= -1/√5