Площадь проекции плоской фигуры на плоскость ω равна произведению площади фигуры на косинус угла между плоскостью фигуры и плоскостью ω.
Найдём высоту проекции трапеции.
Если из конца верхнего основания провести отрезок, равный и параллельный противоположной стороне, то получим равнобедренный треугольник с боковыми сторонами по 5 см и основанием, равным 16 - 10 = 6 см.
Высота h этого треугольника равна высоте трапеции.
h = √(5² - (6/2)²) = 4 см.
Площадь проекции равна: S = ((10 + 16)/2)*4 = 52 см².
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Площадь проекции плоской фигуры на плоскость ω равна произведению площади фигуры на косинус угла между плоскостью фигуры и плоскостью ω.
Найдём высоту проекции трапеции.
Если из конца верхнего основания провести отрезок, равный и параллельный противоположной стороне, то получим равнобедренный треугольник с боковыми сторонами по 5 см и основанием, равным 16 - 10 = 6 см.
Высота h этого треугольника равна высоте трапеции.
h = √(5² - (6/2)²) = 4 см.
Площадь проекции равна: S = ((10 + 16)/2)*4 = 52 см².
Отсюда cos a = 52/(52√2) = 1/√2 = √2/2.
Угол равен 45 градусов.
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см