Выставочный зал 1 Выставочный зал построен в форме тетраэдра. Все рёбра тетраэдра равны 120 м. Со временем его решили разделить на четыре части треугольными перегородками, которые крепятся к рёбрам тетраэдра в их серединах. Каждую из перегородок перед установкой необходимо с двух сторон покрасить. Для определения необходимого количества отделочных материалов, найдите общую площадь поверхности, которую нужно покрасить.
Рассмотрим △AOD и △BOC. У них OD=OB+BD, OC=OA+AC. По условию OA=OB, AC=BD, значит и OD=OC. Угол COD у них общий, а стороны OB=OA, значит △AOD=△BOC по 1му признаку. => <ODA=<OCB
Рассмотрим △DEB и △CEA. У них <DEB=<CEA как верт., <BDA=<ACB из равенства тр-ков, выше. Значит и оставшиеся углы <EBD=EAC. По условию BD=AC, значит △DEB=△CEA по 2му признаку. =>EB=EA
Рассмотрим △EBO и △EAO. EB=EA, OB=OA, а OE - общая, значит △EBO=△EAO по 3му признаку. => <BOE=<AOE, то есть OE - биссектриса угла XOY
Насчёт вопроса как построить - я думаю так: берём угол и откладываем от его вершины 2 равных (для удобства) отрезка на одном и луче и такие же два равных на другом. Соединяем конец большого отрезка на одном луче с серединой такого же отрезка на другом. И также с другим отрезком. Место их пересечения - точку соединяем с вершиной угла и получится биссектриса. Собственно всё как на этом рисунке, только я предлагаю все отрезки сделать равными.
Для вирішення цього завдання, спочатку знайдемо більшу основу трапеції, використовуючи властивість, що коло вписане в прямокутну трапецію розташоване на серединній лінії.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції: Р = (6 + х) / 2, де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння: 4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2: 8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння: х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції: S = (a + b) * h / 2, де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола): S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Объяснение:
Рассмотрим △AOD и △BOC. У них OD=OB+BD, OC=OA+AC. По условию OA=OB, AC=BD, значит и OD=OC. Угол COD у них общий, а стороны OB=OA, значит △AOD=△BOC по 1му признаку. => <ODA=<OCB
Рассмотрим △DEB и △CEA. У них <DEB=<CEA как верт., <BDA=<ACB из равенства тр-ков, выше. Значит и оставшиеся углы <EBD=EAC. По условию BD=AC, значит △DEB=△CEA по 2му признаку. =>EB=EA
Рассмотрим △EBO и △EAO. EB=EA, OB=OA, а OE - общая, значит △EBO=△EAO по 3му признаку. => <BOE=<AOE, то есть OE - биссектриса угла XOY
Насчёт вопроса как построить - я думаю так: берём угол и откладываем от его вершины 2 равных (для удобства) отрезка на одном и луче и такие же два равных на другом. Соединяем конец большого отрезка на одном луче с серединой такого же отрезка на другом. И также с другим отрезком. Место их пересечения - точку соединяем с вершиной угла и получится биссектриса. Собственно всё как на этом рисунке, только я предлагаю все отрезки сделать равными.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Отже, площа трапеції дорівнює 16 см².