Т.к. сумма углов выпуклого четырёхугольника равна 360°
Из этого следует:
130° + 55° + 45° + 125° = 345°
Если сумма углов меньше или больше 360° ⇒ Это не четырёхугольник
Значит нет такого четырёхугольника
б)15
Объяснение:
(n-2)*180=2340
n=15
2. а)Нет . Каждая диагональ делиться на два равных треугольника
б)Нет. Противолежащие стороны равно
в)Да. Противолежащие < равно
г)Да. Диагонали точкой пересечения делится на попалам AC=ВD
3.Решение:
Средняя линия треугольника равна половине основания треугольника, следовательно основание треугольника равно: 7*2=14 (м) , т.к. меньшее основание образовавшейся трапеции, есть средняя линия треугольника, равная 7м
Зная что средняя линия треугольника делит боковые стороны трегольника пополам, боковые стороны треугольники равны:
- первая 5*2=10(м)
-вторая 6*2=12(м)
Отсюда:
периметр треугольника равен: 14+10+12=36(м)
4.высота , проведенная к основанию является медианой ( треугольник равнобедренный ) ⇒ медиана , проведенная к боковой стороне делит ее в отношении 2 : 1 ⇒ меньший отрезок высоты равен 4 , а вся высота 12
Для вычисления полной поверхности цилиндра нужно найти его радиус. Квадраты в сечении будут равными, поскольку одна их сторана равна высоте цилиндра, т.е. 5 см. Радиус можно найти начертив основание, построить угол 120 градусов, вершина которога лежит на окружности, так как плоскости проходят через образующую, а стороны равны как стороны квадратов, провести радиусы и доказать, что полусается равносторонний треугольник. Но можно и по другому. Известно, что в окружность можно вписать правильный шестиугольник, сторона которого равна радиусу окружности, а углы 120 градусов. Проверим 6 * 120 = 720 - сумма углов такого шестиугольника. И то что это действительно шестиугольник можно проверить по формуле суммы углов многоугольника 180 * (n - 2) = 180 * (6 - 2) = 720. Значит стороны квадратов на основании являются сторонами правильного шестиугольника, вписанного в окружность и равны радиусу. S = 2 * П * R * Н = 2 * П * 5 * 5 = 50П см^2 ответ: 50П см^2
Для нахождения радиуса выбирай любой из предложенных Просто без чертежа сложно объяснять.
1 Нет, не существует.
Объяснение:
Т.к. сумма углов выпуклого четырёхугольника равна 360°
Из этого следует:
130° + 55° + 45° + 125° = 345°
Если сумма углов меньше или больше 360° ⇒ Это не четырёхугольник
Значит нет такого четырёхугольника
б)15
Объяснение:
(n-2)*180=2340
n=15
2. а)Нет . Каждая диагональ делиться на два равных треугольника
б)Нет. Противолежащие стороны равно
в)Да. Противолежащие < равно
г)Да. Диагонали точкой пересечения делится на попалам AC=ВD
3.Решение:
Средняя линия треугольника равна половине основания треугольника, следовательно основание треугольника равно: 7*2=14 (м) , т.к. меньшее основание образовавшейся трапеции, есть средняя линия треугольника, равная 7м
Зная что средняя линия треугольника делит боковые стороны трегольника пополам, боковые стороны треугольники равны:
- первая 5*2=10(м)
-вторая 6*2=12(м)
Отсюда:
периметр треугольника равен: 14+10+12=36(м)
4.высота , проведенная к основанию является медианой ( треугольник равнобедренный ) ⇒ медиана , проведенная к боковой стороне делит ее в отношении 2 : 1 ⇒ меньший отрезок высоты равен 4 , а вся высота 12
Квадраты в сечении будут равными, поскольку одна их сторана равна высоте цилиндра, т.е. 5 см.
Радиус можно найти начертив основание, построить угол 120 градусов, вершина которога лежит на окружности, так как плоскости проходят через образующую, а стороны равны как стороны квадратов, провести радиусы и доказать, что полусается равносторонний треугольник. Но можно и по другому.
Известно, что в окружность можно вписать правильный шестиугольник, сторона которого равна радиусу окружности, а углы 120 градусов.
Проверим 6 * 120 = 720 - сумма углов такого шестиугольника.
И то что это действительно шестиугольник можно проверить по формуле суммы углов многоугольника 180 * (n - 2) = 180 * (6 - 2) = 720.
Значит стороны квадратов на основании являются сторонами правильного шестиугольника, вписанного в окружность и равны радиусу.
S = 2 * П * R * Н = 2 * П * 5 * 5 = 50П см^2
ответ: 50П см^2
Для нахождения радиуса выбирай любой из предложенных Просто без чертежа сложно объяснять.