Як зміниться площа прямокутника, якщо одну його сторону збільшити удвічі, а другу - зменшити в 4 рази? А)збільшиться удвічі Б)зменшиться удвічі В)збільшиться у 1,5 рази Г)не зміниться
т.к. угол между диагональю и меньшей стороной равен 60 градусам, то угол между диагональю и большей стороной равен 30 градусам => меньшая сторона равна половине диагонали (как катет, лежащий против угла равного 30 градусам в прямоугольном треугольнике)
7√3 : 2 = 3,5√3
т.к. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов, то квадрат диагонали равен сумме квадратов сторон; обозначим неизвестную сторону "х"
3,5√3
Объяснение:
т.к. угол между диагональю и меньшей стороной равен 60 градусам, то угол между диагональю и большей стороной равен 30 градусам => меньшая сторона равна половине диагонали (как катет, лежащий против угла равного 30 градусам в прямоугольном треугольнике)
7√3 : 2 = 3,5√3
т.к. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов, то квадрат диагонали равен сумме квадратов сторон; обозначим неизвестную сторону "х"
10,5^2 + х^2 = (7√3)^2
110,25 + х^2 = 147
х^2 = 147 - 110,25 = 36,75
х = √36,75 = 3,5√3
проверка: 3,5√3 = √3,5^2*3 = √12,25*3 = √36,75
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4