1. Расстояние от точки К до прямой МР будет являться перпендикуляр КО, опущенный из вершины К на сторону МР. Тогда в прямоугольном треугольнике РОК сторона КР=2КО (по условию). В прямоугольном треугольнике РОК катет КО равный половине гипотенузы КР лежит против угла КРМ равного 30 градусов.
2. Расстоянием от прямой b до стороны КР будет являться перпендикуляр МН, опущенный из вершины М к стороне КР. Тогда в прямоугольном треугольнике РМН против угла НРМ (это тот же угол КРМ) равного 30 градусов лежит катет МН равный половине гипотенузы МР. МН=16/2=8
Диагонали ромба делят его на четыре равных прямоугольных треугольника, поэтому достаточно найти площадь одного из них (см. рисунок). В треугольнике AOB высота OH делит гипотенузу AB на отрезки, равные 1 и 4. Известно, что высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому длин отрезков, на которые она делит гипотенузу. (Этот факт, насколько мне известно, не нужно доказывать, но это легко сделать, так как треугольники AOH и BOH подобны, поэтому AH/OH=OH/BH). Тогда OH=√AH*BH=2. Зная длину гипотенузы и длину высоты, опущенной на неё, можно найти площадь треугольника, которая равна 1/2*(4+1)*2=5. А площадь ромба, то есть площадь 4 таких треугольников, равна 5*4=20.
1. Расстояние от точки К до прямой МР будет являться перпендикуляр КО, опущенный из вершины К на сторону МР. Тогда в прямоугольном треугольнике РОК сторона КР=2КО (по условию). В прямоугольном треугольнике РОК катет КО равный половине гипотенузы КР лежит против угла КРМ равного 30 градусов.
2. Расстоянием от прямой b до стороны КР будет являться перпендикуляр МН, опущенный из вершины М к стороне КР. Тогда в прямоугольном треугольнике РМН против угла НРМ (это тот же угол КРМ) равного 30 градусов лежит катет МН равный половине гипотенузы МР. МН=16/2=8