Радиус r вписанной окружности = 3,5 см.
Радиус R описанной окружности= 10,625 см.
Объяснение:
Дан треугольник АВС, высота ВД=8 см, АД=15 см, ДС=6 см.
Сторона АС = 15 + 6 = 21 см.
Отсюда находим площадь треугольника.
S = (1/2)ah = (1/2)*21*8 = 84 см².
Теперь используем формулы радиуса.
Радиус r вписанной окружности равен отношению площади треугольника к его полупериметру.
Находим неизвестные стороны.
АВ = √(15² + 8²) = √(225 + 64) = √289 = 17 см.
ВС = √(6² + 8²) = √(36 + 64) = √100 = 10 см.
Полупериметр р = (17 + 10 + 21)/2 = 48/2 = 24 см.
Находим: r = S/p = 84/24 = 3,5 см.
Радиус R описанной окружности равен:
R = abc/(4S) = 17*10*21/(4*84) = 10,625 см.
Держи✔️
y=5x² - 48x + 91
а) координаты вершины параболы y=ax²+bx+c
В(х;у)
х(в) = -b/2a
x(B) = 48 / 10 = 4.8
y(B) = 5*4.8² - 48*4.8 + 91=115.2-23.04+91=183.16
B(4.8; 183.16)
b) направление ветвей параболы
ветви вверх, так как a>0
c) уравнение оси симметрии
х=4,8
d) координаты точек пересечения с осями Oх; Оу
у=0 (х; 0)
5x² - 48x + 91=0
Д= 2304 - 4*5*91 = 484=22²> 0 , значит, 2 корня
х(1) = (48+22)/10=7
х(2) = (48-22)/10 =2,6
(7;0) и (2,6; 0) - точки пересечения с осью х
х=0 (0; у)
у =5x² - 48x + 91
у=91
(0; 91) - точка пересечения с осью у
Подробнее - на -
Радиус r вписанной окружности = 3,5 см.
Радиус R описанной окружности= 10,625 см.
Объяснение:
Дан треугольник АВС, высота ВД=8 см, АД=15 см, ДС=6 см.
Сторона АС = 15 + 6 = 21 см.
Отсюда находим площадь треугольника.
S = (1/2)ah = (1/2)*21*8 = 84 см².
Теперь используем формулы радиуса.
Радиус r вписанной окружности равен отношению площади треугольника к его полупериметру.
Находим неизвестные стороны.
АВ = √(15² + 8²) = √(225 + 64) = √289 = 17 см.
ВС = √(6² + 8²) = √(36 + 64) = √100 = 10 см.
Полупериметр р = (17 + 10 + 21)/2 = 48/2 = 24 см.
Находим: r = S/p = 84/24 = 3,5 см.
Радиус R описанной окружности равен:
R = abc/(4S) = 17*10*21/(4*84) = 10,625 см.
Держи✔️
y=5x² - 48x + 91
а) координаты вершины параболы y=ax²+bx+c
В(х;у)
х(в) = -b/2a
x(B) = 48 / 10 = 4.8
y(B) = 5*4.8² - 48*4.8 + 91=115.2-23.04+91=183.16
B(4.8; 183.16)
b) направление ветвей параболы
ветви вверх, так как a>0
c) уравнение оси симметрии
х=4,8
d) координаты точек пересечения с осями Oх; Оу
у=0 (х; 0)
5x² - 48x + 91=0
Д= 2304 - 4*5*91 = 484=22²> 0 , значит, 2 корня
х(1) = (48+22)/10=7
х(2) = (48-22)/10 =2,6
(7;0) и (2,6; 0) - точки пересечения с осью х
х=0 (0; у)
у =5x² - 48x + 91
у=91
(0; 91) - точка пересечения с осью у
Подробнее - на -