а) Из условия следует, что угол ВМК должен быть равен углу А. В треугольниках МВК и АВС угол В общий. Треугольники подобны по двум углам (первый признак подобия) . Следовательно, КМ: АС=ВК: ВС
б) Площадь треугольника АВС равна сумме площадей четырёхугольника AKMC (S1) и площади треугольника МВК (S2). Значит, площадь треугольника АВС относится к площади треугольника МВК как 9:1. Отношение площадей подобных фигур равно квадрату коэффициента подобия. 9=3^2. Коэффициент подобия равен 3. Тогда АВ: ВМ=3
а) Из условия следует, что угол ВМК должен быть равен углу А. В треугольниках МВК и АВС угол В общий. Треугольники подобны по двум углам (первый признак подобия) . Следовательно, КМ: АС=ВК: ВС
б) Площадь треугольника АВС равна сумме площадей четырёхугольника AKMC (S1) и площади треугольника МВК (S2). Значит, площадь треугольника АВС относится к площади треугольника МВК как 9:1. Отношение площадей подобных фигур равно квадрату коэффициента подобия. 9=3^2. Коэффициент подобия равен 3. Тогда АВ: ВМ=3
Объяснение:
ответ:Треугольник АВС
<АВС=180-(22+50)=180-72=108 градусов
Углы АВС и СВD-смежные,их сумма равна 180 градусов,тогда
<CBD=180-108=72 градуса
По условию задачи треугольник ВСD равнобедренный,т к
ВС=ВD
Значит,угол СВD-угол при вершине равнобедренного треугольника,а углы при основании равны между собой
<ВСD=<D=(180-72):2=108:2=54 градуса
Номер 2
Угол АLC и угол АLB-смежные углы,их сумма равна 180 градусов,тогда
<АLB=180-121=59 градусов
Треугольник ABLИзвестны два угла,узнаём третий
<ВАL=180-(59+101)=180-160=20 градусов
Т к АL биссектриса,то
<А=20•2=40 градусов
Тогда
<АСВ=180-(40+101)=180-141=39 градусов
Объяснение: