Із точки до площини правильного трикутника проведено перпендкуляр довжиною √69 см. Основою перпендикуляра є одна із вершин трикутника. Відстань від точки до сторони трикутника, яка не містить основу перпендикуляра, дорівнює 12 см. Знайдіть відстані від даної точки до інших вершин трикутника.
Так как, по условию, призма правильная, то в ее основании лежит правильный треугольник, тогда АВ = ВС = АС. Пусть сторона треугольника будет а см, а высота призмы h см.
Так как в основании окружность описана вокруг правильного треугольника, то ее радиус будет равен:
R = а / √3 см, тогда а = R * √3 см.
Площадь основания призмы будет равна: Sосн1 = а2 * √3 / 4.
Тогда объем призмы будет равен: Vпр = h * а2 * √3 / 4 = h * (R * √3)2 * √3 / 4 = h * R2 * 3 * √3 / 4.
R2 * h = 4 * Vпр / 3 * √3 = 4 * √3 * Vпр / 9.
Объем цилиндра равен:
Vцил = п * R2 * h = п * 4 * √3 * Vпр / 9.
ответ: Объем цилиндра равен п * 4 * √3 * Vпр / 9 см3.
По свойству биссектрис трапеции они образовывают при боковых сторонах равнобедренные треугольники. Тогда ВК = АВ = 25 см, СК = СД = 30 см, тогда ВС = ВК + СК = 25 + 30 = 55 см.
Построим высоты ВН и СМ. Четырехугольник НВСМ прямоугольник, тогда НМ = ВС = 55 см.
В прямоугольном треугольнике СДМ определим длину катета ДМ.
ДМ2 = СД2 – СМ2 = 900 – 576 = 324.
ДМ = 18 см.
В прямоугольном треугольнике АВН определим длину катета АН.
АН2 = АВ2 – ВН2 = 625 – 576 = 49.
ДМ = 7 см.
Тогда АД = АН + НМ + ДМ = 7 + 55 + 18 = 80 см.
Определим площадь трапеции.
Sавсд = (ВС + АД) * ВН / 2 = (55 + 80) * 24 / 2 = 1620 см2.
ответ: Площадь трапеции равна 1620 см2.