Задачі на кути трикутника не важкі, якщо мова йде про 8, 9 клас школи. Але коли йде мова про медіани, бісектриси чи певні побудови то знаходження кутів в трикутнику не таке просте, як може здатися з умов. Далі наведені завдання складнішого типу, вони цікавіші, а їх аналіз точно Вас чогось навчить.
Приклад 30.26 Бісектриса гострого кута прямокутного трикутника утворює з протилежною стороною кути, один з яких дорівнює 70 градусів.
Знайти у градусах менший гострий кут трикутника.
Розв'язування: Нехай маємо прямокутний трикутник ABC (∠C=90), AL – бісектриса, яка проведена до сторони BC, тоді ∠ALC=70 градусів (за умовою).
Побудуємо рисунок трикутника та бісектриси в ньому
5. угол АВD = 45°
угол DBC = 45°
угол ВАD = 45°
угол BCD = 45°
угол BDA = 90°
угол BDC = 90°
Объяснение:
5. 1) ТК АВ = ВС, то ∆АВС - р/б;
2) ТК ∆АВС - р/б => высота ВD, проведённая к основанию, является биссектрисой и медианой => угол АBD = угол DBC и AD = DC.
3) ТК АD = DC,
DB - общ.
Угол ADB = угол ВDC (BD -высота) => ∆ BDA = ∆ BDC по 1 признаку равенства треугольников => угол DAB = угол CDB
4) ТК угол АBD = угол DBC и угол DAB = угол CDB, то угол АВD = угол DBC = угол ВАD = угол BCD = 180° (сумма углов треугольника равна 180°) – 90° / 2 = 45°
Задачі на кути трикутника з розв'язками
Задачі на кути трикутника не важкі, якщо мова йде про 8, 9 клас школи. Але коли йде мова про медіани, бісектриси чи певні побудови то знаходження кутів в трикутнику не таке просте, як може здатися з умов. Далі наведені завдання складнішого типу, вони цікавіші, а їх аналіз точно Вас чогось навчить.
Приклад 30.26 Бісектриса гострого кута прямокутного трикутника утворює з протилежною стороною кути, один з яких дорівнює 70 градусів.
Знайти у градусах менший гострий кут трикутника.
Розв'язування: Нехай маємо прямокутний трикутник ABC (∠C=90), AL – бісектриса, яка проведена до сторони BC, тоді ∠ALC=70 градусів (за умовою).
Побудуємо рисунок трикутника та бісектриси в ньому