Задача № 1. Через точку О, лежащую между параллельными плоскостями а и в, проведены прямые и т. Прямая / пересекает плоскости а и В в точках D, и D, соответственно, прямая т - в точках С, и С2. Найдите длину отрезка D, D, , если D,O = 6 см, C,D,: C,D, =2:3.
АВ = 12
<АВС = 90°
ВМ - медиана
cos<ВМС - ?
Решение
В прямоугольном треугольнике ABC медиана равна половине гипотенузы.
1) Найдём по теореме Пифагора гипотенузу АС
АС² = АВ² + ВС²
АС² = 12² + 16² = 144 + 256 = 400
АС = √400 = 20
2) Т.к. ВМ - медиана, то АМ = СМ = 20/2 = 10
3)Для ΔВСМ применим теорему косинусов
ВС² = ВМ² + СМ² - 2* ВМ * СМ * cos<BMC
256 = 100 + 100 - 2 * 10 *10 * cos<BMC
cos<BMC = - 56/200
cos<BMC = - 0.28 знак минус означает, что <ВМС - тупой
ответ: cos<BMC = - 0.28