Задача 1. В равнобедренном треугольнике АВС с основанием АС проведены биссектрисы АД и СЕ. Докажите, что треугольник АВД равен треугольнику СВЕ Задача 2. В равнобедренном треугольнике АВС с основанием АС проведены медианы АМ и СК. Докажите, что треугольник АМВ равен треугольнику СКВ.
Аксиома 1
Через две точки можно провести прямую линию и притом только одну.
Аксиома 2
Если две точки прямой принадлежат плоскости, то и каждая точка этой прямой принадлежит плоскости.
Аксиома 3
Отрезок прямой короче всякой другой линии (ломаной или кривой), соединяющей его концы.
Расстояние между двумя точками измеряется по прямой линии. В геометрии используются еще и такие аксиомы, которые уже применялись в арифметике и алгебре (сформулируем их для произвольных величин A, B и C):
Аксиома 4
Если A=B и B=C, то A=C.
Аксиома 5
Если A=B, то A+C=B+C и A-C=B-C.
Объяснение:
здесь ответы
Имеем:
m^2-n^2=2014
(m-n)*(m+n)=2014 числа m-n и m+n тоже целые соответственно.
Заметим что 2014 не кратно 4,значит оно не представимо в виде произведения двух четных чисел.
Число 2014 четное,тогда поскольку произведение двух нечётныx чисел число нечётное,то одно из чисеп m-n и m+n четное,а другое нет.
Сумма этих чисел: (m-n)+(m+n)=2*m - четное число. Но сумма четного и нечетного числа число нечетное. То есть мы пришли к противоречию.
Целых решений нет.