Задача!! К плоскости α проведена наклонная AB (A∈α). Длина наклонной равна 16 см, наклонная с плоскостью образует угол 30°. Вычисли, на каком расстоянии от плоскости находится точка B.
Примерно из середины проведенного отрезка линии "а" (пусть это точка D) восстанавливаем перпендикуляр DB длиной h. Это высота h нашего треугольника из вершины B на основание.
Из точки В циркулем раствором, равным боковой стороне b, делаем 2 засечки на прямой "а" в точках А и С.
Соединив точку В с точками А и С, получаем равнобедренный треугольник АВС.
Доказательством является свойство высоты равнобедренного треугольника быть одновременно и биссектрисой и медианой.
1) С=180-(В+А)=180-(45+35)=100 (по св-ву углов треугольника)
2)ВАС=ДАК=56(как вертикальные)
С=180-(ВАС-АВС)=180-(56+64)=60 (по св-ву углов треугольника)
4) ДВА=А=76(как накрестлежащие)
В=180-(76+45)=39 (по св-ву углов треугольника)
6)СВО=ОДА=40(как накрестлежащие)
ВОС=АОД=180-(А+Д)=180-85=95 (по св-ву углов треугольника)
ОАД=С=45(как накрестлежащие)
7)КВА=180-АВС=180-100=80(как смежные)
КАС=180-(К+КВА)=180-(90+80)=10 (по св-ву углов треугольника)
8) ДАС=180-(АДС+ДСА)=180-143=37 (по св-ву углов треугольника)
ВАД=ДАС=37(по св-ву биссектрисы)
ВДА=180-АДС=180-110=70(как смежные)
АВС=АВД=180-(ВАД+ВДА)=180-107=73 (по св-ву углов треугольника)
На первую часть
Проводим горизонтальную линию "а".
Примерно из середины проведенного отрезка линии "а" (пусть это точка D) восстанавливаем перпендикуляр DB длиной h. Это высота h нашего треугольника из вершины B на основание.
Из точки В циркулем раствором, равным боковой стороне b, делаем 2 засечки на прямой "а" в точках А и С.
Соединив точку В с точками А и С, получаем равнобедренный треугольник АВС.
Доказательством является свойство высоты равнобедренного треугольника быть одновременно и биссектрисой и медианой.
Боковые стороны равны по построению.