Задача такова: Плоскость α пересекает стороны МN и NP треугольника MNP в точках А и В соответственно, причем МА : AN = 3 : 4, PB : PN = 3 : 7. Докажите, что МР ‖ α. Найдите МР, если АВ = 16 см. С рисунком модно на листе все сделать и кинуть
А давай-ка дадим двум катетам имена. Пусть они будут х и у, договорились?
Нам на придёт дедушка Пифагор с его теоремой, в нашем случае она запишется так: 12^2 = x^2 + y^2 = 144. Запомним это.
Теперь подтянем такое свойство биссектрисы, что она делит противолежащую сторону на отрезки в такой же пропорции, как и боковые стороны. По ходу, это верно для любого треугольника, не обязательно прямоугольного. В нашем случае это запишется так: x / y = 4 / 8 или, если угодно, 8х = 4у, или у=2х
Замечательно. У нас есть система из двух уравнений с двумя неизвестными, значит можем решить. Подставим в т.Пифагора второе выражение, и обнаружим, что 144 = x^2 + (2x)^2 = 5x^2 отсюда х = корень(144/5) = 12 / корень(5) - вот тебе один из катетов.
Второй найдём по свойству биссектрисы, мы же уже знаем, что у=2х, значит у=2*12 / корень(5) = 24/корень(5).
Есть два катета - узнаём площадь S = 1/2 * x * y = 1/2 * 12/корень(5) * 24/корень(5) = у меня получилось = 144/5 = 28,8.
Такие вот дела. Но ты мне не верь, лучше пересчитай сама - чтобы ошибка вдруг не закралась. А то мало ли, и ответ некруглый - вызывает подозрение.
Существует равнобедренный ∆,с углом при основании 34°,т.к углы при основании равнобед.∆=,значит сумма углов при основании= 68°,а сумма всех углов∆=180°,значит третий угол в ∆=180-68=112°. Другие варианты не подходят, т.к не соответствуют теореме: сумма углов ∆=180°,и они в сумме дают больше180°,а этого быть не может(например для 1) если один угол при основании=94°,значит и второй угол при основании =94°,т.к углы при основании в равнобедреном треугольнике=,значит 94+94=188,а этого уже не может быть,т.к в ∆ есть еще и третий угол,а в сумме все три угла должны равняться 180°,а у тебя только два в сумме дали 188,это противоречит теореме,а значит такой ∆ не существует,для 2) и 3)-такое же доказательство)
Нам на придёт дедушка Пифагор с его теоремой, в нашем случае она запишется так:
12^2 = x^2 + y^2 = 144. Запомним это.
Теперь подтянем такое свойство биссектрисы, что она делит противолежащую сторону на отрезки в такой же пропорции, как и боковые стороны. По ходу, это верно для любого треугольника, не обязательно прямоугольного. В нашем случае это запишется так:
x / y = 4 / 8
или, если угодно, 8х = 4у, или у=2х
Замечательно. У нас есть система из двух уравнений с двумя неизвестными, значит можем решить. Подставим в т.Пифагора второе выражение, и обнаружим, что
144 = x^2 + (2x)^2 = 5x^2
отсюда х = корень(144/5) = 12 / корень(5) - вот тебе один из катетов.
Второй найдём по свойству биссектрисы, мы же уже знаем, что у=2х, значит у=2*12 / корень(5) = 24/корень(5).
Есть два катета - узнаём площадь
S = 1/2 * x * y = 1/2 * 12/корень(5) * 24/корень(5) = у меня получилось = 144/5 = 28,8.
Такие вот дела. Но ты мне не верь, лучше пересчитай сама - чтобы ошибка вдруг не закралась. А то мало ли, и ответ некруглый - вызывает подозрение.